Matches in SemOpenAlex for { <https://semopenalex.org/work/W3092615402> ?p ?o ?g. }
- W3092615402 abstract "Abstract Wright’s inbreeding coefficient, F ST , is a fundamental measure in population genetics. Assuming a predefined population subdivision, this statistic is classically used to evaluate population structure at a given genomic locus. With large numbers of loci, unsupervised approaches such as principal component analysis (PCA) have, however, become prominent in recent analyses of population structure. In this study, we describe the relationships between Wright’s inbreeding coefficients and PCA for a model of K discrete populations. Our theory provides an equivalent definition of F ST based on the decomposition of the genotype matrix into between and within-population matrices. The average value of Wright’s F ST over all loci included in the genotype matrix can be obtained from the PCA of the between-population matrix. Assuming that a separation condition is fulfilled and for reasonably large data sets, this value of F ST approximates the proportion of genetic variation explained by the first ( K – 1) principal components accurately. The new definition of F ST is useful for computing inbreeding coefficients from surrogate genotypes, for example, obtained after correction of experimental artifacts or after removing adaptive genetic variation associated with environmental variables. The relationships between inbreeding coefficients and the spectrum of the genotype matrix not only allow interpretations of PCA results in terms of population genetic concepts but extend those concepts to population genetic analyses accounting for temporal, geographical and environmental contexts. Author’s summary Principal component analysis (PCA) is the most-frequently used approach to describe population genetic structure from large population genomic data sets. In this study, we show that PCA not only estimates ancestries of sampled individuals, but also computes the average value of Wright’s inbreeding coefficient over the loci included in the genotype matrix. Our result shows that inbreeding coefficients and PCA eigenvalues provide equivalent descriptions of population structure. As a consequence, PCA extends the definition of this coefficient beyond the framework of allelic frequencies. We give examples on how F ST can be computed from ancient DNA samples for which genotypes are corrected for coverage, and in an ecological genomic example where a proportion of genetic variation is explained by environmental variables." @default.
- W3092615402 created "2020-10-15" @default.
- W3092615402 creator A5086054843 @default.
- W3092615402 creator A5088168870 @default.
- W3092615402 date "2020-10-09" @default.
- W3092615402 modified "2023-09-26" @default.
- W3092615402 title "A Spectral Theory for Wright’s Inbreeding Coefficients and Related Quantities" @default.
- W3092615402 cites W1520752838 @default.
- W3092615402 cites W1760976735 @default.
- W3092615402 cites W1958633700 @default.
- W3092615402 cites W1963999631 @default.
- W3092615402 cites W1988182864 @default.
- W3092615402 cites W1992085420 @default.
- W3092615402 cites W2004444667 @default.
- W3092615402 cites W2005666522 @default.
- W3092615402 cites W2025341678 @default.
- W3092615402 cites W2050299213 @default.
- W3092615402 cites W2050876420 @default.
- W3092615402 cites W2060581589 @default.
- W3092615402 cites W2072706575 @default.
- W3092615402 cites W2096201493 @default.
- W3092615402 cites W2098737273 @default.
- W3092615402 cites W2101863694 @default.
- W3092615402 cites W2104549677 @default.
- W3092615402 cites W2119652557 @default.
- W3092615402 cites W2129034036 @default.
- W3092615402 cites W2133097426 @default.
- W3092615402 cites W2138256593 @default.
- W3092615402 cites W2158489424 @default.
- W3092615402 cites W2158751030 @default.
- W3092615402 cites W2165020864 @default.
- W3092615402 cites W2165799971 @default.
- W3092615402 cites W2166214412 @default.
- W3092615402 cites W2167067208 @default.
- W3092615402 cites W2169294950 @default.
- W3092615402 cites W2169353806 @default.
- W3092615402 cites W2172064185 @default.
- W3092615402 cites W2177180777 @default.
- W3092615402 cites W2179226428 @default.
- W3092615402 cites W2215565699 @default.
- W3092615402 cites W2282722799 @default.
- W3092615402 cites W2284253967 @default.
- W3092615402 cites W2295124130 @default.
- W3092615402 cites W2419574648 @default.
- W3092615402 cites W2884552970 @default.
- W3092615402 cites W2911192550 @default.
- W3092615402 cites W2949385499 @default.
- W3092615402 cites W2949897938 @default.
- W3092615402 cites W2949991261 @default.
- W3092615402 cites W2951448261 @default.
- W3092615402 cites W2952605328 @default.
- W3092615402 cites W2979905951 @default.
- W3092615402 cites W2980565598 @default.
- W3092615402 cites W2986112152 @default.
- W3092615402 cites W3087059261 @default.
- W3092615402 cites W3101063317 @default.
- W3092615402 cites W3119366910 @default.
- W3092615402 cites W3125031388 @default.
- W3092615402 cites W4231311503 @default.
- W3092615402 cites W4233758357 @default.
- W3092615402 cites W4244129870 @default.
- W3092615402 doi "https://doi.org/10.1101/2020.10.07.329755" @default.
- W3092615402 hasPublicationYear "2020" @default.
- W3092615402 type Work @default.
- W3092615402 sameAs 3092615402 @default.
- W3092615402 citedByCount "0" @default.
- W3092615402 crossrefType "posted-content" @default.
- W3092615402 hasAuthorship W3092615402A5086054843 @default.
- W3092615402 hasAuthorship W3092615402A5088168870 @default.
- W3092615402 hasBestOaLocation W30926154021 @default.
- W3092615402 hasConcept C105795698 @default.
- W3092615402 hasConcept C144024400 @default.
- W3092615402 hasConcept C149923435 @default.
- W3092615402 hasConcept C27438332 @default.
- W3092615402 hasConcept C2777782036 @default.
- W3092615402 hasConcept C2908647359 @default.
- W3092615402 hasConcept C33923547 @default.
- W3092615402 hasConcept C54355233 @default.
- W3092615402 hasConcept C78458016 @default.
- W3092615402 hasConcept C85721925 @default.
- W3092615402 hasConcept C86803240 @default.
- W3092615402 hasConceptScore W3092615402C105795698 @default.
- W3092615402 hasConceptScore W3092615402C144024400 @default.
- W3092615402 hasConceptScore W3092615402C149923435 @default.
- W3092615402 hasConceptScore W3092615402C27438332 @default.
- W3092615402 hasConceptScore W3092615402C2777782036 @default.
- W3092615402 hasConceptScore W3092615402C2908647359 @default.
- W3092615402 hasConceptScore W3092615402C33923547 @default.
- W3092615402 hasConceptScore W3092615402C54355233 @default.
- W3092615402 hasConceptScore W3092615402C78458016 @default.
- W3092615402 hasConceptScore W3092615402C85721925 @default.
- W3092615402 hasConceptScore W3092615402C86803240 @default.
- W3092615402 hasLocation W30926154021 @default.
- W3092615402 hasOpenAccess W3092615402 @default.
- W3092615402 hasPrimaryLocation W30926154021 @default.
- W3092615402 hasRelatedWork W11392601 @default.
- W3092615402 hasRelatedWork W12909966 @default.
- W3092615402 hasRelatedWork W13760022 @default.
- W3092615402 hasRelatedWork W15384012 @default.
- W3092615402 hasRelatedWork W16705290 @default.