Matches in SemOpenAlex for { <https://semopenalex.org/work/W3092628085> ?p ?o ?g. }
- W3092628085 endingPage "1843" @default.
- W3092628085 startingPage "1829" @default.
- W3092628085 abstract "Aim: Conventional experimental approaches used for the evaluation of the proarrhythmic potential of compounds in the drug discovery process are expensive and time consuming but an integral element in the safety profile required for a new drug to be approved. The voltage-gated sodium ion channel 1.5 (Na v 1.5), a target known for arrhythmic drugs, causes adverse cardiac complications when the channel is blocked. Results: Machine learning classification and regression models were built to predict the possibility of blocking these channels by small molecules. The finalized models tested with balanced accuracies of 0.88, 0.93 and 0.94 at three thresholds (1, 10 and 30 µmol, respectively). The regression model built to predict the pIC 50 of compounds had q 2 of 0.84 (root-mean-square error = 0.46). Conclusion: The machine learning models that have been built can act as effective filters to screen out the potentially toxic compounds in the early stages of drug discovery." @default.
- W3092628085 created "2020-10-15" @default.
- W3092628085 creator A5033319168 @default.
- W3092628085 creator A5078061243 @default.
- W3092628085 creator A5080248921 @default.
- W3092628085 date "2020-10-01" @default.
- W3092628085 modified "2023-09-24" @default.
- W3092628085 title "Machine learning-based QSAR models to predict sodium ion channel (Na<sub>v</sub> 1.5) blockers" @default.
- W3092628085 cites W1541455863 @default.
- W3092628085 cites W1545231783 @default.
- W3092628085 cites W1590077241 @default.
- W3092628085 cites W1679846099 @default.
- W3092628085 cites W1972650408 @default.
- W3092628085 cites W1974880836 @default.
- W3092628085 cites W1988037271 @default.
- W3092628085 cites W1988195734 @default.
- W3092628085 cites W1991284201 @default.
- W3092628085 cites W1996327711 @default.
- W3092628085 cites W1999798000 @default.
- W3092628085 cites W2003918316 @default.
- W3092628085 cites W2007344527 @default.
- W3092628085 cites W2017398555 @default.
- W3092628085 cites W2019575783 @default.
- W3092628085 cites W2031492998 @default.
- W3092628085 cites W2033757486 @default.
- W3092628085 cites W2051739724 @default.
- W3092628085 cites W2052226480 @default.
- W3092628085 cites W2054716083 @default.
- W3092628085 cites W2063482843 @default.
- W3092628085 cites W2084942160 @default.
- W3092628085 cites W2086729168 @default.
- W3092628085 cites W2087661061 @default.
- W3092628085 cites W2095581992 @default.
- W3092628085 cites W2097590818 @default.
- W3092628085 cites W2119327816 @default.
- W3092628085 cites W2122284941 @default.
- W3092628085 cites W2123623993 @default.
- W3092628085 cites W2125271591 @default.
- W3092628085 cites W2128245586 @default.
- W3092628085 cites W2133990480 @default.
- W3092628085 cites W2137618884 @default.
- W3092628085 cites W2143676329 @default.
- W3092628085 cites W2159887157 @default.
- W3092628085 cites W2204695023 @default.
- W3092628085 cites W2294467502 @default.
- W3092628085 cites W2325310505 @default.
- W3092628085 cites W2340782621 @default.
- W3092628085 cites W2467309505 @default.
- W3092628085 cites W2512708499 @default.
- W3092628085 cites W2556851635 @default.
- W3092628085 cites W2558999090 @default.
- W3092628085 cites W2582187633 @default.
- W3092628085 cites W2606827815 @default.
- W3092628085 cites W2726379379 @default.
- W3092628085 cites W2743191900 @default.
- W3092628085 cites W2753588101 @default.
- W3092628085 cites W2801991413 @default.
- W3092628085 cites W2815914914 @default.
- W3092628085 cites W2896735777 @default.
- W3092628085 cites W2904461414 @default.
- W3092628085 cites W2911964244 @default.
- W3092628085 cites W2970686841 @default.
- W3092628085 cites W2995985288 @default.
- W3092628085 cites W3146417683 @default.
- W3092628085 cites W4238589708 @default.
- W3092628085 doi "https://doi.org/10.4155/fmc-2020-0156" @default.
- W3092628085 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33034205" @default.
- W3092628085 hasPublicationYear "2020" @default.
- W3092628085 type Work @default.
- W3092628085 sameAs 3092628085 @default.
- W3092628085 citedByCount "7" @default.
- W3092628085 countsByYear W30926280852021 @default.
- W3092628085 countsByYear W30926280852022 @default.
- W3092628085 countsByYear W30926280852023 @default.
- W3092628085 crossrefType "journal-article" @default.
- W3092628085 hasAuthorship W3092628085A5033319168 @default.
- W3092628085 hasAuthorship W3092628085A5078061243 @default.
- W3092628085 hasAuthorship W3092628085A5080248921 @default.
- W3092628085 hasConcept C105795698 @default.
- W3092628085 hasConcept C111919701 @default.
- W3092628085 hasConcept C119857082 @default.
- W3092628085 hasConcept C139945424 @default.
- W3092628085 hasConcept C144745244 @default.
- W3092628085 hasConcept C152877465 @default.
- W3092628085 hasConcept C154945302 @default.
- W3092628085 hasConcept C164126121 @default.
- W3092628085 hasConcept C178790620 @default.
- W3092628085 hasConcept C185592680 @default.
- W3092628085 hasConcept C186060115 @default.
- W3092628085 hasConcept C2780035454 @default.
- W3092628085 hasConcept C33923547 @default.
- W3092628085 hasConcept C41008148 @default.
- W3092628085 hasConcept C48921125 @default.
- W3092628085 hasConcept C50952357 @default.
- W3092628085 hasConcept C537181965 @default.
- W3092628085 hasConcept C55493867 @default.
- W3092628085 hasConcept C71924100 @default.
- W3092628085 hasConcept C74187038 @default.