Matches in SemOpenAlex for { <https://semopenalex.org/work/W3092643984> ?p ?o ?g. }
- W3092643984 endingPage "1034" @default.
- W3092643984 startingPage "1015" @default.
- W3092643984 abstract "Abstract. Upper tropospheric (UT) cloud systems constructed from Atmospheric Infrared Sounder (AIRS) cloud data provide a horizontal emissivity structure, allowing the convective core to be linked to anvil properties. By using machine learning techniques, we composed a horizontally complete picture of the radiative heating rates deduced from CALIPSO lidar and CloudSat radar measurements, which are only available along narrow nadir tracks. To train the artificial neural networks, we combined the simultaneous AIRS, CALIPSO and CloudSat data with ERA-Interim meteorological reanalysis data in the tropics over a period of 4 years. The resulting non-linear regression models estimate the radiative heating rates as a function of about 40 cloud, atmospheric and surface properties, with a column-integrated mean absolute error (MAE) of 0.8 K d−1 (0.5 K d−1) for cloudy scenes and 0.4 K d−1 (0.3 K d−1) for clear sky in the longwave (shortwave) spectral domain. Developing separate models for (i) high opaque clouds, (ii) cirrus, (iii) mid- and low-level clouds and (iv) clear sky, independently over ocean and over land, leads to a small improvement, when considering the profiles. These models were applied to the whole AIRS cloud dataset, combined with ERA-Interim, to build 3D radiative heating rate fields. Over the deep tropics, UT clouds have a net radiative heating effect of about 0.3 K d−1 throughout the troposphere from 250 hPa downward. This radiative heating enhances the column-integrated latent heating by about 22±3 %. While in warmer regions the net radiative heating profile is nearly completely driven by deep convective cloud systems, it is also influenced by low-level clouds in the cooler regions. The heating rates of the convective systems in both regions also differ: in the warm regions the net radiative heating by the thicker cirrus anvils is vertically more extended, and their surrounding thin cirrus heat the entire troposphere by about 0.5 K d−1. The 15-year time series reveal a slight increase of the vertical heating in the upper and middle troposphere by convective systems with tropical surface temperature warming, which can be linked to deeper systems. In addition, the layer near the tropopause is slightly more heated by increased thin cirrus during periods of surface warming. While the relative coverage of convective systems is relatively stable with surface warming, their depth increases, measured by a decrease of their near-top temperature of -3.4±0.2 K K−1. Finally, the data reveal a connection of the mesoscale convective system (MCS) heating in the upper and middle troposphere and the (low-level) cloud cooling in the lower atmosphere in the cool regions, with a correlation coefficient equal to 0.72, which consolidates the hypothesis of an energetic connection between the convective regions and the subsidence regions." @default.
- W3092643984 created "2020-10-15" @default.
- W3092643984 creator A5000736967 @default.
- W3092643984 creator A5058315655 @default.
- W3092643984 creator A5074517373 @default.
- W3092643984 creator A5079732578 @default.
- W3092643984 date "2021-01-26" @default.
- W3092643984 modified "2023-10-11" @default.
- W3092643984 title "3D radiative heating of tropical upper tropospheric cloud systems derived from synergistic A-Train observations and machine learning" @default.
- W3092643984 cites W1690345107 @default.
- W3092643984 cites W1779480193 @default.
- W3092643984 cites W1965707772 @default.
- W3092643984 cites W1970906263 @default.
- W3092643984 cites W1972204950 @default.
- W3092643984 cites W1975610613 @default.
- W3092643984 cites W1980170273 @default.
- W3092643984 cites W1980646850 @default.
- W3092643984 cites W1986584375 @default.
- W3092643984 cites W1988055524 @default.
- W3092643984 cites W1995060923 @default.
- W3092643984 cites W1996434761 @default.
- W3092643984 cites W2000367699 @default.
- W3092643984 cites W2007790132 @default.
- W3092643984 cites W2009591809 @default.
- W3092643984 cites W2010717001 @default.
- W3092643984 cites W2015714569 @default.
- W3092643984 cites W2026951977 @default.
- W3092643984 cites W2029739915 @default.
- W3092643984 cites W2063032378 @default.
- W3092643984 cites W2083511168 @default.
- W3092643984 cites W2090735862 @default.
- W3092643984 cites W2093215882 @default.
- W3092643984 cites W2094149691 @default.
- W3092643984 cites W2095530811 @default.
- W3092643984 cites W2104688531 @default.
- W3092643984 cites W2114869867 @default.
- W3092643984 cites W2121745948 @default.
- W3092643984 cites W2128558833 @default.
- W3092643984 cites W2129211528 @default.
- W3092643984 cites W2135985403 @default.
- W3092643984 cites W2142490748 @default.
- W3092643984 cites W2148233761 @default.
- W3092643984 cites W2150027424 @default.
- W3092643984 cites W2150122568 @default.
- W3092643984 cites W2154145150 @default.
- W3092643984 cites W2256274928 @default.
- W3092643984 cites W2513274944 @default.
- W3092643984 cites W2528899826 @default.
- W3092643984 cites W2566312563 @default.
- W3092643984 cites W2587328645 @default.
- W3092643984 cites W2613875555 @default.
- W3092643984 cites W2621194191 @default.
- W3092643984 cites W2745965803 @default.
- W3092643984 cites W2747744517 @default.
- W3092643984 cites W2767289137 @default.
- W3092643984 cites W2769049559 @default.
- W3092643984 cites W2793466508 @default.
- W3092643984 cites W2799709141 @default.
- W3092643984 cites W2897279834 @default.
- W3092643984 cites W2903021956 @default.
- W3092643984 cites W2922091309 @default.
- W3092643984 cites W2942821123 @default.
- W3092643984 cites W2946160190 @default.
- W3092643984 cites W2957357082 @default.
- W3092643984 cites W2963077801 @default.
- W3092643984 cites W2965572644 @default.
- W3092643984 cites W2971550284 @default.
- W3092643984 cites W3025949386 @default.
- W3092643984 doi "https://doi.org/10.5194/acp-21-1015-2021" @default.
- W3092643984 hasPublicationYear "2021" @default.
- W3092643984 type Work @default.
- W3092643984 sameAs 3092643984 @default.
- W3092643984 citedByCount "3" @default.
- W3092643984 countsByYear W30926439842021 @default.
- W3092643984 countsByYear W30926439842023 @default.
- W3092643984 crossrefType "journal-article" @default.
- W3092643984 hasAuthorship W3092643984A5000736967 @default.
- W3092643984 hasAuthorship W3092643984A5058315655 @default.
- W3092643984 hasAuthorship W3092643984A5074517373 @default.
- W3092643984 hasAuthorship W3092643984A5079732578 @default.
- W3092643984 hasBestOaLocation W30926439841 @default.
- W3092643984 hasConcept C111919701 @default.
- W3092643984 hasConcept C121332964 @default.
- W3092643984 hasConcept C127313418 @default.
- W3092643984 hasConcept C1276947 @default.
- W3092643984 hasConcept C142773270 @default.
- W3092643984 hasConcept C153294291 @default.
- W3092643984 hasConcept C19269812 @default.
- W3092643984 hasConcept C199194280 @default.
- W3092643984 hasConcept C199390426 @default.
- W3092643984 hasConcept C205649164 @default.
- W3092643984 hasConcept C206887242 @default.
- W3092643984 hasConcept C2776272892 @default.
- W3092643984 hasConcept C2779067591 @default.
- W3092643984 hasConcept C2779155178 @default.
- W3092643984 hasConcept C2781448682 @default.
- W3092643984 hasConcept C39432304 @default.
- W3092643984 hasConcept C41008148 @default.