Matches in SemOpenAlex for { <https://semopenalex.org/work/W3092674410> ?p ?o ?g. }
- W3092674410 endingPage "273" @default.
- W3092674410 startingPage "254" @default.
- W3092674410 abstract "Two of the most researched problems on transfer line, transfer line balancing problem (TLBP) and buffer allocation problem (BAP), are usually solved separately, although they are closely interrelated. When machine tools have different reliability, the traditional balancing approaches lead to a deviation of the production rate from the actual throughput, which is used as the objective of the following optimization on BAP. This may not only reduce the solution space of BAP, but also bring about a biased overall result. In this paper, the simultaneous solution of these two problems is presented, which includes transfer line balancing problem, BAP, and selection of line configuration, machine tools and fixtures. Production rate computed through simulation software and total cost considering machine tools and buffer capacities are used as two objective functions. The problem is solved applying a multi-objective optimization approach. Two well-known evolutionary algorithms are considered: Non-dominated Sorting Genetic Algorithm-II (NSGA-II) and Multi-Objective Particle Swarm Optimization (MOPSO). A real case study related to automotive sector is used to demonstrate the validity of the proposed approach." @default.
- W3092674410 created "2020-10-22" @default.
- W3092674410 creator A5013397623 @default.
- W3092674410 creator A5030385315 @default.
- W3092674410 creator A5063701397 @default.
- W3092674410 creator A5079223563 @default.
- W3092674410 creator A5081729072 @default.
- W3092674410 date "2020-10-01" @default.
- W3092674410 modified "2023-09-30" @default.
- W3092674410 title "Simultaneously solving the transfer line balancing and buffer allocation problems with a multi-objective approach" @default.
- W3092674410 cites W111879292 @default.
- W3092674410 cites W1667790360 @default.
- W3092674410 cites W1963679962 @default.
- W3092674410 cites W1964968822 @default.
- W3092674410 cites W1981847132 @default.
- W3092674410 cites W1984595899 @default.
- W3092674410 cites W1994357852 @default.
- W3092674410 cites W1996584646 @default.
- W3092674410 cites W1997188340 @default.
- W3092674410 cites W1998408808 @default.
- W3092674410 cites W2020320008 @default.
- W3092674410 cites W2025230389 @default.
- W3092674410 cites W2033241422 @default.
- W3092674410 cites W2034230072 @default.
- W3092674410 cites W2036027669 @default.
- W3092674410 cites W2046159497 @default.
- W3092674410 cites W2048161731 @default.
- W3092674410 cites W2051181116 @default.
- W3092674410 cites W2056159849 @default.
- W3092674410 cites W2057798351 @default.
- W3092674410 cites W2057808459 @default.
- W3092674410 cites W2066435380 @default.
- W3092674410 cites W2071611097 @default.
- W3092674410 cites W2072869413 @default.
- W3092674410 cites W2081291462 @default.
- W3092674410 cites W2095346766 @default.
- W3092674410 cites W2109791710 @default.
- W3092674410 cites W2125899728 @default.
- W3092674410 cites W2126105956 @default.
- W3092674410 cites W2187091021 @default.
- W3092674410 cites W2413650606 @default.
- W3092674410 cites W2506108624 @default.
- W3092674410 cites W2507382977 @default.
- W3092674410 cites W2524795217 @default.
- W3092674410 cites W2621256709 @default.
- W3092674410 cites W2734837195 @default.
- W3092674410 cites W2738725431 @default.
- W3092674410 cites W2742572369 @default.
- W3092674410 cites W2744528667 @default.
- W3092674410 cites W2765421510 @default.
- W3092674410 cites W2790675559 @default.
- W3092674410 cites W2880828199 @default.
- W3092674410 cites W2890649858 @default.
- W3092674410 cites W2970390688 @default.
- W3092674410 cites W4241971694 @default.
- W3092674410 doi "https://doi.org/10.1016/j.jmsy.2020.09.009" @default.
- W3092674410 hasPublicationYear "2020" @default.
- W3092674410 type Work @default.
- W3092674410 sameAs 3092674410 @default.
- W3092674410 citedByCount "8" @default.
- W3092674410 countsByYear W30926744102021 @default.
- W3092674410 countsByYear W30926744102022 @default.
- W3092674410 countsByYear W30926744102023 @default.
- W3092674410 crossrefType "journal-article" @default.
- W3092674410 hasAuthorship W3092674410A5013397623 @default.
- W3092674410 hasAuthorship W3092674410A5030385315 @default.
- W3092674410 hasAuthorship W3092674410A5063701397 @default.
- W3092674410 hasAuthorship W3092674410A5079223563 @default.
- W3092674410 hasAuthorship W3092674410A5081729072 @default.
- W3092674410 hasConcept C111696304 @default.
- W3092674410 hasConcept C11413529 @default.
- W3092674410 hasConcept C121332964 @default.
- W3092674410 hasConcept C126255220 @default.
- W3092674410 hasConcept C127413603 @default.
- W3092674410 hasConcept C13736549 @default.
- W3092674410 hasConcept C145018004 @default.
- W3092674410 hasConcept C163258240 @default.
- W3092674410 hasConcept C173608175 @default.
- W3092674410 hasConcept C198352243 @default.
- W3092674410 hasConcept C2524010 @default.
- W3092674410 hasConcept C2776175482 @default.
- W3092674410 hasConcept C2781029164 @default.
- W3092674410 hasConcept C33923547 @default.
- W3092674410 hasConcept C41008148 @default.
- W3092674410 hasConcept C43214815 @default.
- W3092674410 hasConcept C62520636 @default.
- W3092674410 hasConcept C68781425 @default.
- W3092674410 hasConcept C76155785 @default.
- W3092674410 hasConcept C78519656 @default.
- W3092674410 hasConcept C85617194 @default.
- W3092674410 hasConcept C8880873 @default.
- W3092674410 hasConcept C99862985 @default.
- W3092674410 hasConceptScore W3092674410C111696304 @default.
- W3092674410 hasConceptScore W3092674410C11413529 @default.
- W3092674410 hasConceptScore W3092674410C121332964 @default.
- W3092674410 hasConceptScore W3092674410C126255220 @default.
- W3092674410 hasConceptScore W3092674410C127413603 @default.
- W3092674410 hasConceptScore W3092674410C13736549 @default.