Matches in SemOpenAlex for { <https://semopenalex.org/work/W3092682953> ?p ?o ?g. }
- W3092682953 endingPage "2627" @default.
- W3092682953 startingPage "2613" @default.
- W3092682953 abstract "Abstract The model and algorithm of intensity-modulated radiotherapy (IMRT) are updated increasingly quickly, but the hardware upgrade of primary hospitals often lags behind. The new generation of intelligent precise radiotherapy platforms provides users with intelligent medical consortium services using big data, artificial intelligence and industrial Internet of Things technology. This technology can ensure that under the real-time guidance of a professional medical consortium, primary hospitals can realize rapid large-scale reverse planning design and can more accurately consider many factors of postprocessing. Although large-scale healthcare systems, such as volumetric-modulated arc therapy and other accurate radiotherapy technologies, have developed rapidly, the development of step-and-shoot-mode IMRT technology is still very important for developing countries. For software, in addition to the conformity of the dose distribution, the modulation speed, convenience and stability of the later dose delivery should also be considered in inverse planning. Therefore, this paper analyzes the main problems in conventional IMRT inverse planning, including the smoothing of the fluence map, the selection of the gantry angle and the dose leakage of tongue–groove effects. To address these issues, a novel Intelligent IoT-based large-scale inverse planning strategy with the key factors of the postmodulation is developed, and a detailed flow chart is also provided. The scheme consists of two steps. The first step is to obtain a relatively optimal combination of gantry angles by considering the dose distribution requirements and constraints and the modulation requirements and constraints. The second step is to optimize the intensity map, to smooth the map based on prior knowledge according to the determined angles, and to obtain the final modulation scheme according to the relevant objectives and constraints of the map decomposition (leaf sequencing). In an experiment, we calculate and validate the clinical head and neck case. Because of the special gantry angle selection, the angle combination is optimized from the initial equivalent distribution to adapt to the target area and protect the nontarget area. The value of the objective function varies greatly after the optimization, especially in the target area, and the target value decreases by approximately 10%. On this basis, we smooth the fluence map by a partial differential equation with prior knowledge and a minimization of the total number of monitor units. It is also shown from the objective function value that the target value is essentially unchanged for the target area, while for the nontarget area, the value decreases by 16%, which is very impressive." @default.
- W3092682953 created "2020-10-22" @default.
- W3092682953 creator A5017227883 @default.
- W3092682953 creator A5028718370 @default.
- W3092682953 creator A5039638672 @default.
- W3092682953 creator A5040100496 @default.
- W3092682953 creator A5047916176 @default.
- W3092682953 date "2020-10-13" @default.
- W3092682953 modified "2023-09-26" @default.
- W3092682953 title "Intelligent IoT-based large-scale inverse planning system considering postmodulation factors" @default.
- W3092682953 cites W1558121360 @default.
- W3092682953 cites W2118573797 @default.
- W3092682953 cites W2560575446 @default.
- W3092682953 cites W2580387373 @default.
- W3092682953 cites W2588189553 @default.
- W3092682953 cites W2655756549 @default.
- W3092682953 cites W2741806077 @default.
- W3092682953 cites W2768429895 @default.
- W3092682953 cites W2770617334 @default.
- W3092682953 cites W2770685936 @default.
- W3092682953 cites W2775150748 @default.
- W3092682953 cites W2789597473 @default.
- W3092682953 cites W2794962342 @default.
- W3092682953 cites W2797311821 @default.
- W3092682953 cites W2800366688 @default.
- W3092682953 cites W2801214982 @default.
- W3092682953 cites W2806173079 @default.
- W3092682953 cites W2809024848 @default.
- W3092682953 cites W2809386743 @default.
- W3092682953 cites W2887604528 @default.
- W3092682953 cites W2904871403 @default.
- W3092682953 cites W2905141874 @default.
- W3092682953 cites W2945285932 @default.
- W3092682953 cites W2946341834 @default.
- W3092682953 cites W2978947837 @default.
- W3092682953 cites W2982383316 @default.
- W3092682953 cites W2991579978 @default.
- W3092682953 cites W2997754910 @default.
- W3092682953 cites W3035069812 @default.
- W3092682953 cites W3098640627 @default.
- W3092682953 cites W3101658832 @default.
- W3092682953 doi "https://doi.org/10.1007/s40747-020-00207-7" @default.
- W3092682953 hasPublicationYear "2020" @default.
- W3092682953 type Work @default.
- W3092682953 sameAs 3092682953 @default.
- W3092682953 citedByCount "1" @default.
- W3092682953 countsByYear W30926829532021 @default.
- W3092682953 crossrefType "journal-article" @default.
- W3092682953 hasAuthorship W3092682953A5017227883 @default.
- W3092682953 hasAuthorship W3092682953A5028718370 @default.
- W3092682953 hasAuthorship W3092682953A5039638672 @default.
- W3092682953 hasAuthorship W3092682953A5040100496 @default.
- W3092682953 hasAuthorship W3092682953A5047916176 @default.
- W3092682953 hasBestOaLocation W30926829531 @default.
- W3092682953 hasConcept C111919701 @default.
- W3092682953 hasConcept C120314980 @default.
- W3092682953 hasConcept C121332964 @default.
- W3092682953 hasConcept C127413603 @default.
- W3092682953 hasConcept C13736549 @default.
- W3092682953 hasConcept C154945302 @default.
- W3092682953 hasConcept C17816587 @default.
- W3092682953 hasConcept C199360897 @default.
- W3092682953 hasConcept C201995342 @default.
- W3092682953 hasConcept C2777904410 @default.
- W3092682953 hasConcept C2778755073 @default.
- W3092682953 hasConcept C2780615140 @default.
- W3092682953 hasConcept C31972630 @default.
- W3092682953 hasConcept C3770464 @default.
- W3092682953 hasConcept C41008148 @default.
- W3092682953 hasConcept C44154836 @default.
- W3092682953 hasConcept C62520636 @default.
- W3092682953 hasConcept C79403827 @default.
- W3092682953 hasConcept C90509273 @default.
- W3092682953 hasConceptScore W3092682953C111919701 @default.
- W3092682953 hasConceptScore W3092682953C120314980 @default.
- W3092682953 hasConceptScore W3092682953C121332964 @default.
- W3092682953 hasConceptScore W3092682953C127413603 @default.
- W3092682953 hasConceptScore W3092682953C13736549 @default.
- W3092682953 hasConceptScore W3092682953C154945302 @default.
- W3092682953 hasConceptScore W3092682953C17816587 @default.
- W3092682953 hasConceptScore W3092682953C199360897 @default.
- W3092682953 hasConceptScore W3092682953C201995342 @default.
- W3092682953 hasConceptScore W3092682953C2777904410 @default.
- W3092682953 hasConceptScore W3092682953C2778755073 @default.
- W3092682953 hasConceptScore W3092682953C2780615140 @default.
- W3092682953 hasConceptScore W3092682953C31972630 @default.
- W3092682953 hasConceptScore W3092682953C3770464 @default.
- W3092682953 hasConceptScore W3092682953C41008148 @default.
- W3092682953 hasConceptScore W3092682953C44154836 @default.
- W3092682953 hasConceptScore W3092682953C62520636 @default.
- W3092682953 hasConceptScore W3092682953C79403827 @default.
- W3092682953 hasConceptScore W3092682953C90509273 @default.
- W3092682953 hasFunder F4320321001 @default.
- W3092682953 hasIssue "3" @default.
- W3092682953 hasLocation W30926829531 @default.
- W3092682953 hasOpenAccess W3092682953 @default.
- W3092682953 hasPrimaryLocation W30926829531 @default.
- W3092682953 hasRelatedWork W105724887 @default.