Matches in SemOpenAlex for { <https://semopenalex.org/work/W3092699618> ?p ?o ?g. }
- W3092699618 endingPage "4061" @default.
- W3092699618 startingPage "4047" @default.
- W3092699618 abstract "Software-as-a-service (SaaS) is a license for access to a specific cloud application through the Internet. However, these services are delayed and sometimes totally disrupted because of the Internet’s unavailability that provides opportunities for a lot of attacks. Research into the security of the cloud focuses mainly on prohibiting malicious users from using the cloud to launch attacks, such as those currently done by botnets, including launching a DDoS attack, sending spam, etc. Because SaaS uses computational power from both servers of cloud computing providers and machines of customers, we argue that SaaS may be elaborately exploited in an unprecedented way as an attack vector for botnets. The previous research work has developed a novel framework for detecting the attacks with the aid of a deep learning approach (Doriguzzi-Corin et al., 2020). Although the attack node in the network has been identified, they were not diminished. An enhanced and powerful adversary model is to be provided as a solution to this problem. Hence, this paper intends to develop a novel framework for attack node mitigation using a secure SaaS Framework. The main contribution of this paper provides an attack detection process that takes place in Deep Belief Network (DBN), in which the weight, as well as activation function, are fine-tuned with Median Fitness oriented Sea Lion Optimization algorithm (MFSLnO). If DBN detects an attack node, the control is transferred to a lightweight bait approach that reliably mitigates the most common attack nodes without disrupting regular connections will be deployed. The performance of the proposed work yielded the best results over the traditional models with a packet loss ratio of 16% and throughput of 89%." @default.
- W3092699618 created "2020-10-22" @default.
- W3092699618 creator A5004986010 @default.
- W3092699618 creator A5073146467 @default.
- W3092699618 date "2022-07-01" @default.
- W3092699618 modified "2023-09-25" @default.
- W3092699618 title "A machine learning based attack detection and mitigation using a secure SaaS framework" @default.
- W3092699618 cites W2017524370 @default.
- W3092699618 cites W2044587647 @default.
- W3092699618 cites W2095003442 @default.
- W3092699618 cites W2110390205 @default.
- W3092699618 cites W2147147599 @default.
- W3092699618 cites W2157467244 @default.
- W3092699618 cites W2290883490 @default.
- W3092699618 cites W2520828829 @default.
- W3092699618 cites W2613740561 @default.
- W3092699618 cites W2622879003 @default.
- W3092699618 cites W2765421913 @default.
- W3092699618 cites W2781769908 @default.
- W3092699618 cites W2791671827 @default.
- W3092699618 cites W2792329922 @default.
- W3092699618 cites W2793914140 @default.
- W3092699618 cites W2800773710 @default.
- W3092699618 cites W2805966918 @default.
- W3092699618 cites W2884204879 @default.
- W3092699618 cites W2888568240 @default.
- W3092699618 cites W2889592383 @default.
- W3092699618 cites W2889635482 @default.
- W3092699618 cites W2893411563 @default.
- W3092699618 cites W2899310174 @default.
- W3092699618 cites W2900734365 @default.
- W3092699618 cites W2902711202 @default.
- W3092699618 cites W2943589990 @default.
- W3092699618 cites W2945446878 @default.
- W3092699618 cites W2946326300 @default.
- W3092699618 cites W2946867748 @default.
- W3092699618 cites W2949580166 @default.
- W3092699618 cites W2958285686 @default.
- W3092699618 cites W2963129815 @default.
- W3092699618 cites W2964986234 @default.
- W3092699618 cites W2965829475 @default.
- W3092699618 cites W2982654856 @default.
- W3092699618 cites W2984982626 @default.
- W3092699618 cites W3102091066 @default.
- W3092699618 cites W3122864121 @default.
- W3092699618 cites W4230467205 @default.
- W3092699618 doi "https://doi.org/10.1016/j.jksuci.2020.10.005" @default.
- W3092699618 hasPublicationYear "2022" @default.
- W3092699618 type Work @default.
- W3092699618 sameAs 3092699618 @default.
- W3092699618 citedByCount "5" @default.
- W3092699618 countsByYear W30926996182022 @default.
- W3092699618 countsByYear W30926996182023 @default.
- W3092699618 crossrefType "journal-article" @default.
- W3092699618 hasAuthorship W3092699618A5004986010 @default.
- W3092699618 hasAuthorship W3092699618A5073146467 @default.
- W3092699618 hasBestOaLocation W30926996181 @default.
- W3092699618 hasConcept C110875604 @default.
- W3092699618 hasConcept C111919701 @default.
- W3092699618 hasConcept C127413603 @default.
- W3092699618 hasConcept C136764020 @default.
- W3092699618 hasConcept C175133352 @default.
- W3092699618 hasConcept C200601418 @default.
- W3092699618 hasConcept C22735295 @default.
- W3092699618 hasConcept C2777904410 @default.
- W3092699618 hasConcept C2780505938 @default.
- W3092699618 hasConcept C31258907 @default.
- W3092699618 hasConcept C38652104 @default.
- W3092699618 hasConcept C38822068 @default.
- W3092699618 hasConcept C41008148 @default.
- W3092699618 hasConcept C41065033 @default.
- W3092699618 hasConcept C529173508 @default.
- W3092699618 hasConcept C541664917 @default.
- W3092699618 hasConcept C62611344 @default.
- W3092699618 hasConcept C66938386 @default.
- W3092699618 hasConcept C79974875 @default.
- W3092699618 hasConcept C93996380 @default.
- W3092699618 hasConceptScore W3092699618C110875604 @default.
- W3092699618 hasConceptScore W3092699618C111919701 @default.
- W3092699618 hasConceptScore W3092699618C127413603 @default.
- W3092699618 hasConceptScore W3092699618C136764020 @default.
- W3092699618 hasConceptScore W3092699618C175133352 @default.
- W3092699618 hasConceptScore W3092699618C200601418 @default.
- W3092699618 hasConceptScore W3092699618C22735295 @default.
- W3092699618 hasConceptScore W3092699618C2777904410 @default.
- W3092699618 hasConceptScore W3092699618C2780505938 @default.
- W3092699618 hasConceptScore W3092699618C31258907 @default.
- W3092699618 hasConceptScore W3092699618C38652104 @default.
- W3092699618 hasConceptScore W3092699618C38822068 @default.
- W3092699618 hasConceptScore W3092699618C41008148 @default.
- W3092699618 hasConceptScore W3092699618C41065033 @default.
- W3092699618 hasConceptScore W3092699618C529173508 @default.
- W3092699618 hasConceptScore W3092699618C541664917 @default.
- W3092699618 hasConceptScore W3092699618C62611344 @default.
- W3092699618 hasConceptScore W3092699618C66938386 @default.
- W3092699618 hasConceptScore W3092699618C79974875 @default.
- W3092699618 hasConceptScore W3092699618C93996380 @default.
- W3092699618 hasIssue "7" @default.