Matches in SemOpenAlex for { <https://semopenalex.org/work/W3092733182> ?p ?o ?g. }
- W3092733182 abstract "Angiosarcomas are soft-tissue sarcomas that form malignant vascular tissues. Angiosarcomas are very rare, and due to their aggressive behavior and high metastatic propensity, they have poor clinical outcomes. Hemangiosarcomas commonly occur in domestic dogs, and share pathological and clinical features with human angiosarcomas. Typical pathognomonic features of this tumor are irregular vascular channels that are filled with blood and are lined by a mixture of malignant and nonmalignant endothelial cells. The current gold standard is the histological diagnosis of angiosarcoma; however, microscopic evaluation may be complicated, particularly when tumor cells are undetectable due to the presence of excessive amounts of nontumor cells or when tissue specimens have insufficient tumor content. In this study, we implemented machine learning applications from next-generation transcriptomic data of canine hemangiosarcoma tumor samples (n = 76) and nonmalignant tissues (n = 10) to evaluate their training performance for diagnostic utility. The 10-fold cross-validation test and multiple feature selection methods were applied. We found that extra trees and random forest learning models were the best classifiers for hemangiosarcoma in our testing datasets. We also identified novel gene signatures using the mutual information and Monte Carlo feature selection method. The extra trees model revealed high classification accuracy for hemangiosarcoma in validation sets. We demonstrate that high-throughput sequencing data of canine hemangiosarcoma are trainable for machine learning applications. Furthermore, our approach enables us to identify novel gene signatures as reliable determinants of hemangiosarcoma, providing significant insights into the development of potential applications for this vascular malignancy." @default.
- W3092733182 created "2020-10-22" @default.
- W3092733182 creator A5033911917 @default.
- W3092733182 creator A5037206021 @default.
- W3092733182 creator A5050160834 @default.
- W3092733182 creator A5087299724 @default.
- W3092733182 date "2020-10-20" @default.
- W3092733182 modified "2023-09-25" @default.
- W3092733182 title "Machine learning application identifies novel gene signatures from transcriptomic data of spontaneous canine hemangiosarcoma" @default.
- W3092733182 cites W1554955944 @default.
- W3092733182 cites W1927440587 @default.
- W3092733182 cites W1967708939 @default.
- W3092733182 cites W1983035953 @default.
- W3092733182 cites W1994488319 @default.
- W3092733182 cites W2000206516 @default.
- W3092733182 cites W2008449196 @default.
- W3092733182 cites W2029855461 @default.
- W3092733182 cites W2051014917 @default.
- W3092733182 cites W2051087584 @default.
- W3092733182 cites W2055912677 @default.
- W3092733182 cites W2094484532 @default.
- W3092733182 cites W2098801491 @default.
- W3092733182 cites W2100805904 @default.
- W3092733182 cites W2114785296 @default.
- W3092733182 cites W2116459725 @default.
- W3092733182 cites W2119732961 @default.
- W3092733182 cites W2129329018 @default.
- W3092733182 cites W2133613482 @default.
- W3092733182 cites W2135428178 @default.
- W3092733182 cites W2140861361 @default.
- W3092733182 cites W2155806188 @default.
- W3092733182 cites W2161032069 @default.
- W3092733182 cites W2178400256 @default.
- W3092733182 cites W2763635670 @default.
- W3092733182 cites W2768620978 @default.
- W3092733182 cites W2775090445 @default.
- W3092733182 cites W2794211683 @default.
- W3092733182 cites W2915554894 @default.
- W3092733182 cites W2950016253 @default.
- W3092733182 cites W2953998300 @default.
- W3092733182 cites W2955844127 @default.
- W3092733182 cites W2962900722 @default.
- W3092733182 cites W2964849163 @default.
- W3092733182 cites W2967877307 @default.
- W3092733182 cites W2978797341 @default.
- W3092733182 cites W2985207183 @default.
- W3092733182 cites W3005073090 @default.
- W3092733182 cites W3005974663 @default.
- W3092733182 cites W3010971361 @default.
- W3092733182 cites W3014009429 @default.
- W3092733182 cites W4241497580 @default.
- W3092733182 cites W4252826935 @default.
- W3092733182 doi "https://doi.org/10.1093/bib/bbaa252" @default.
- W3092733182 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33078825" @default.
- W3092733182 hasPublicationYear "2020" @default.
- W3092733182 type Work @default.
- W3092733182 sameAs 3092733182 @default.
- W3092733182 citedByCount "3" @default.
- W3092733182 countsByYear W30927331822022 @default.
- W3092733182 countsByYear W30927331822023 @default.
- W3092733182 crossrefType "journal-article" @default.
- W3092733182 hasAuthorship W3092733182A5033911917 @default.
- W3092733182 hasAuthorship W3092733182A5037206021 @default.
- W3092733182 hasAuthorship W3092733182A5050160834 @default.
- W3092733182 hasAuthorship W3092733182A5087299724 @default.
- W3092733182 hasConcept C104317684 @default.
- W3092733182 hasConcept C142724271 @default.
- W3092733182 hasConcept C148483581 @default.
- W3092733182 hasConcept C150194340 @default.
- W3092733182 hasConcept C154945302 @default.
- W3092733182 hasConcept C162317418 @default.
- W3092733182 hasConcept C169258074 @default.
- W3092733182 hasConcept C2779217266 @default.
- W3092733182 hasConcept C2779399171 @default.
- W3092733182 hasConcept C2781082889 @default.
- W3092733182 hasConcept C41008148 @default.
- W3092733182 hasConcept C55493867 @default.
- W3092733182 hasConcept C71924100 @default.
- W3092733182 hasConcept C86803240 @default.
- W3092733182 hasConceptScore W3092733182C104317684 @default.
- W3092733182 hasConceptScore W3092733182C142724271 @default.
- W3092733182 hasConceptScore W3092733182C148483581 @default.
- W3092733182 hasConceptScore W3092733182C150194340 @default.
- W3092733182 hasConceptScore W3092733182C154945302 @default.
- W3092733182 hasConceptScore W3092733182C162317418 @default.
- W3092733182 hasConceptScore W3092733182C169258074 @default.
- W3092733182 hasConceptScore W3092733182C2779217266 @default.
- W3092733182 hasConceptScore W3092733182C2779399171 @default.
- W3092733182 hasConceptScore W3092733182C2781082889 @default.
- W3092733182 hasConceptScore W3092733182C41008148 @default.
- W3092733182 hasConceptScore W3092733182C55493867 @default.
- W3092733182 hasConceptScore W3092733182C71924100 @default.
- W3092733182 hasConceptScore W3092733182C86803240 @default.
- W3092733182 hasFunder F4320317756 @default.
- W3092733182 hasIssue "4" @default.
- W3092733182 hasLocation W30927331821 @default.
- W3092733182 hasLocation W30927331822 @default.
- W3092733182 hasOpenAccess W3092733182 @default.
- W3092733182 hasPrimaryLocation W30927331821 @default.
- W3092733182 hasRelatedWork W1998921076 @default.