Matches in SemOpenAlex for { <https://semopenalex.org/work/W3092743670> ?p ?o ?g. }
- W3092743670 endingPage "101846" @default.
- W3092743670 startingPage "101846" @default.
- W3092743670 abstract "• Propose triple attention n etwork (A 3 Net) for thoracic disease diagnosis on chest X ray. • Learn channel wise, element wise, and scale wise attention s imultaneously. • Incorporate three attention learning mechanisms in to a deep classification model. • A chiev e highest average AUC on the ChestX ray14 dataset without using external data. Chest X-ray is the most common radiology examinations for the diagnosis of thoracic diseases. However, due to the complexity of pathological abnormalities and lack of detailed annotation of those abnormalities, computer-aided diagnosis (CAD) of thoracic diseases remains challenging. In this paper, we propose the triple-attention learning (A 3 Net) model for this CAD task. This model uses the pre-trained DenseNet-121 as the backbone network for feature extraction, and integrates three attention modules in a unified framework for channel-wise, element-wise, and scale-wise attention learning. Specifically, the channel-wise attention prompts the deep model to emphasize the discriminative channels of feature maps; the element-wise attention enables the deep model to focus on the regions of pathological abnormalities; the scale-wise attention facilitates the deep model to recalibrate the feature maps at different scales. The proposed model has been evaluated on 112,120images in the ChestX-ray14 dataset with the official patient-level data split. Compared to state-of-the-art deep learning models, our model achieves the highest per-class AUC in classifying 13 out of 14 thoracic diseases and the highest average per-class AUC of 0.826 over 14 thoracic diseases." @default.
- W3092743670 created "2020-10-22" @default.
- W3092743670 creator A5007642188 @default.
- W3092743670 creator A5028235866 @default.
- W3092743670 creator A5033180510 @default.
- W3092743670 creator A5034520275 @default.
- W3092743670 creator A5055299862 @default.
- W3092743670 creator A5065208984 @default.
- W3092743670 date "2021-01-01" @default.
- W3092743670 modified "2023-10-12" @default.
- W3092743670 title "Triple attention learning for classification of 14 thoracic diseases using chest radiography" @default.
- W3092743670 cites W1973198827 @default.
- W3092743670 cites W2026241237 @default.
- W3092743670 cites W2115597079 @default.
- W3092743670 cites W2117539524 @default.
- W3092743670 cites W2137407508 @default.
- W3092743670 cites W2148546838 @default.
- W3092743670 cites W2331032341 @default.
- W3092743670 cites W2553191729 @default.
- W3092743670 cites W2770511975 @default.
- W3092743670 cites W2783172472 @default.
- W3092743670 cites W2788633781 @default.
- W3092743670 cites W2790564346 @default.
- W3092743670 cites W2885112059 @default.
- W3092743670 cites W2897755679 @default.
- W3092743670 cites W2897806204 @default.
- W3092743670 cites W2901782819 @default.
- W3092743670 cites W2914959431 @default.
- W3092743670 cites W2956897601 @default.
- W3092743670 cites W2958620810 @default.
- W3092743670 cites W2991676991 @default.
- W3092743670 cites W4205623122 @default.
- W3092743670 cites W4232097126 @default.
- W3092743670 cites W747944234 @default.
- W3092743670 doi "https://doi.org/10.1016/j.media.2020.101846" @default.
- W3092743670 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33129145" @default.
- W3092743670 hasPublicationYear "2021" @default.
- W3092743670 type Work @default.
- W3092743670 sameAs 3092743670 @default.
- W3092743670 citedByCount "65" @default.
- W3092743670 countsByYear W30927436702020 @default.
- W3092743670 countsByYear W30927436702021 @default.
- W3092743670 countsByYear W30927436702022 @default.
- W3092743670 countsByYear W30927436702023 @default.
- W3092743670 crossrefType "journal-article" @default.
- W3092743670 hasAuthorship W3092743670A5007642188 @default.
- W3092743670 hasAuthorship W3092743670A5028235866 @default.
- W3092743670 hasAuthorship W3092743670A5033180510 @default.
- W3092743670 hasAuthorship W3092743670A5034520275 @default.
- W3092743670 hasAuthorship W3092743670A5055299862 @default.
- W3092743670 hasAuthorship W3092743670A5065208984 @default.
- W3092743670 hasConcept C108583219 @default.
- W3092743670 hasConcept C119857082 @default.
- W3092743670 hasConcept C120665830 @default.
- W3092743670 hasConcept C121332964 @default.
- W3092743670 hasConcept C127162648 @default.
- W3092743670 hasConcept C127413603 @default.
- W3092743670 hasConcept C138885662 @default.
- W3092743670 hasConcept C153180895 @default.
- W3092743670 hasConcept C154945302 @default.
- W3092743670 hasConcept C162324750 @default.
- W3092743670 hasConcept C187736073 @default.
- W3092743670 hasConcept C192209626 @default.
- W3092743670 hasConcept C194789388 @default.
- W3092743670 hasConcept C199639397 @default.
- W3092743670 hasConcept C2776401178 @default.
- W3092743670 hasConcept C2777212361 @default.
- W3092743670 hasConcept C2778755073 @default.
- W3092743670 hasConcept C2779549770 @default.
- W3092743670 hasConcept C2780451532 @default.
- W3092743670 hasConcept C31258907 @default.
- W3092743670 hasConcept C41008148 @default.
- W3092743670 hasConcept C41895202 @default.
- W3092743670 hasConcept C59404180 @default.
- W3092743670 hasConcept C62520636 @default.
- W3092743670 hasConcept C81363708 @default.
- W3092743670 hasConcept C97931131 @default.
- W3092743670 hasConceptScore W3092743670C108583219 @default.
- W3092743670 hasConceptScore W3092743670C119857082 @default.
- W3092743670 hasConceptScore W3092743670C120665830 @default.
- W3092743670 hasConceptScore W3092743670C121332964 @default.
- W3092743670 hasConceptScore W3092743670C127162648 @default.
- W3092743670 hasConceptScore W3092743670C127413603 @default.
- W3092743670 hasConceptScore W3092743670C138885662 @default.
- W3092743670 hasConceptScore W3092743670C153180895 @default.
- W3092743670 hasConceptScore W3092743670C154945302 @default.
- W3092743670 hasConceptScore W3092743670C162324750 @default.
- W3092743670 hasConceptScore W3092743670C187736073 @default.
- W3092743670 hasConceptScore W3092743670C192209626 @default.
- W3092743670 hasConceptScore W3092743670C194789388 @default.
- W3092743670 hasConceptScore W3092743670C199639397 @default.
- W3092743670 hasConceptScore W3092743670C2776401178 @default.
- W3092743670 hasConceptScore W3092743670C2777212361 @default.
- W3092743670 hasConceptScore W3092743670C2778755073 @default.
- W3092743670 hasConceptScore W3092743670C2779549770 @default.
- W3092743670 hasConceptScore W3092743670C2780451532 @default.
- W3092743670 hasConceptScore W3092743670C31258907 @default.
- W3092743670 hasConceptScore W3092743670C41008148 @default.