Matches in SemOpenAlex for { <https://semopenalex.org/work/W3092747519> ?p ?o ?g. }
- W3092747519 endingPage "1705" @default.
- W3092747519 startingPage "1705" @default.
- W3092747519 abstract "Many image processing, computer graphics, and computer vision problems can be treated as image-to-image translation tasks. Such translation entails learning to map one visual representation of a given input to another representation. Image-to-image translation with generative adversarial networks (GANs) has been intensively studied and applied to various tasks, such as multimodal image-to-image translation, super-resolution translation, object transfiguration-related translation, etc. However, image-to-image translation techniques suffer from some problems, such as mode collapse, instability, and a lack of diversity. This article provides a comprehensive overview of image-to-image translation based on GAN algorithms and its variants. It also discusses and analyzes current state-of-the-art image-to-image translation techniques that are based on multimodal and multidomain representations. Finally, open issues and future research directions utilizing reinforcement learning and three-dimensional (3D) modal translation are summarized and discussed." @default.
- W3092747519 created "2020-10-22" @default.
- W3092747519 creator A5024037777 @default.
- W3092747519 date "2020-10-16" @default.
- W3092747519 modified "2023-10-05" @default.
- W3092747519 title "Deep Generative Adversarial Networks for Image-to-Image Translation: A Review" @default.
- W3092747519 cites W1973445088 @default.
- W3092747519 cites W2112796928 @default.
- W3092747519 cites W2125838338 @default.
- W3092747519 cites W2150283722 @default.
- W3092747519 cites W2172238468 @default.
- W3092747519 cites W2554020789 @default.
- W3092747519 cites W2731899572 @default.
- W3092747519 cites W2755577605 @default.
- W3092747519 cites W2765811365 @default.
- W3092747519 cites W2767787532 @default.
- W3092747519 cites W2772330423 @default.
- W3092747519 cites W2784123366 @default.
- W3092747519 cites W2794284562 @default.
- W3092747519 cites W2796672611 @default.
- W3092747519 cites W2888723145 @default.
- W3092747519 cites W2890139949 @default.
- W3092747519 cites W2896328393 @default.
- W3092747519 cites W2899901572 @default.
- W3092747519 cites W2904843110 @default.
- W3092747519 cites W2914057590 @default.
- W3092747519 cites W2919115771 @default.
- W3092747519 cites W2921353139 @default.
- W3092747519 cites W2946165673 @default.
- W3092747519 cites W2948838566 @default.
- W3092747519 cites W2952056941 @default.
- W3092747519 cites W2963185411 @default.
- W3092747519 cites W2971871555 @default.
- W3092747519 cites W2972962088 @default.
- W3092747519 cites W2976929305 @default.
- W3092747519 cites W2982559712 @default.
- W3092747519 cites W2998723654 @default.
- W3092747519 cites W3005007232 @default.
- W3092747519 cites W3008653537 @default.
- W3092747519 cites W3011628670 @default.
- W3092747519 cites W3012310996 @default.
- W3092747519 cites W3026802938 @default.
- W3092747519 cites W3098423347 @default.
- W3092747519 cites W3105747145 @default.
- W3092747519 cites W3105838287 @default.
- W3092747519 doi "https://doi.org/10.3390/sym12101705" @default.
- W3092747519 hasPublicationYear "2020" @default.
- W3092747519 type Work @default.
- W3092747519 sameAs 3092747519 @default.
- W3092747519 citedByCount "39" @default.
- W3092747519 countsByYear W30927475192021 @default.
- W3092747519 countsByYear W30927475192022 @default.
- W3092747519 countsByYear W30927475192023 @default.
- W3092747519 crossrefType "journal-article" @default.
- W3092747519 hasAuthorship W3092747519A5024037777 @default.
- W3092747519 hasBestOaLocation W30927475191 @default.
- W3092747519 hasConcept C104317684 @default.
- W3092747519 hasConcept C105580179 @default.
- W3092747519 hasConcept C115961682 @default.
- W3092747519 hasConcept C149364088 @default.
- W3092747519 hasConcept C154945302 @default.
- W3092747519 hasConcept C17744445 @default.
- W3092747519 hasConcept C185592680 @default.
- W3092747519 hasConcept C199539241 @default.
- W3092747519 hasConcept C2776359362 @default.
- W3092747519 hasConcept C2779757391 @default.
- W3092747519 hasConcept C31972630 @default.
- W3092747519 hasConcept C39890363 @default.
- W3092747519 hasConcept C41008148 @default.
- W3092747519 hasConcept C55493867 @default.
- W3092747519 hasConcept C77660652 @default.
- W3092747519 hasConcept C9417928 @default.
- W3092747519 hasConcept C94625758 @default.
- W3092747519 hasConceptScore W3092747519C104317684 @default.
- W3092747519 hasConceptScore W3092747519C105580179 @default.
- W3092747519 hasConceptScore W3092747519C115961682 @default.
- W3092747519 hasConceptScore W3092747519C149364088 @default.
- W3092747519 hasConceptScore W3092747519C154945302 @default.
- W3092747519 hasConceptScore W3092747519C17744445 @default.
- W3092747519 hasConceptScore W3092747519C185592680 @default.
- W3092747519 hasConceptScore W3092747519C199539241 @default.
- W3092747519 hasConceptScore W3092747519C2776359362 @default.
- W3092747519 hasConceptScore W3092747519C2779757391 @default.
- W3092747519 hasConceptScore W3092747519C31972630 @default.
- W3092747519 hasConceptScore W3092747519C39890363 @default.
- W3092747519 hasConceptScore W3092747519C41008148 @default.
- W3092747519 hasConceptScore W3092747519C55493867 @default.
- W3092747519 hasConceptScore W3092747519C77660652 @default.
- W3092747519 hasConceptScore W3092747519C9417928 @default.
- W3092747519 hasConceptScore W3092747519C94625758 @default.
- W3092747519 hasIssue "10" @default.
- W3092747519 hasLocation W30927475191 @default.
- W3092747519 hasLocation W30927475192 @default.
- W3092747519 hasOpenAccess W3092747519 @default.
- W3092747519 hasPrimaryLocation W30927475191 @default.
- W3092747519 hasRelatedWork W2361114818 @default.
- W3092747519 hasRelatedWork W2904276469 @default.
- W3092747519 hasRelatedWork W3009918286 @default.