Matches in SemOpenAlex for { <https://semopenalex.org/work/W3092776627> ?p ?o ?g. }
- W3092776627 endingPage "1792" @default.
- W3092776627 startingPage "1792" @default.
- W3092776627 abstract "We are concerned with the following elliptic equations: (−Δ)psv+V(x)|v|p−2v=λa(x)|v|r−2v+g(x,v)inRN, where (−Δ)ps is the fractional p-Laplacian operator with 0<s<1<r<p<+∞, sp<N, the potential function V:RN→(0,∞) is a continuous potential function, and g:RN×R→R satisfies a Carathéodory condition. By employing the mountain pass theorem and a variant of Ekeland’s variational principle as the major tools, we show that the problem above admits at least two distinct non-trivial solutions for the case of a combined effect of concave–convex nonlinearities. Moreover, we present a result on the existence of multiple solutions to the given problem by utilizing the well-known fountain theorem." @default.
- W3092776627 created "2020-10-22" @default.
- W3092776627 creator A5014141624 @default.
- W3092776627 date "2020-10-15" @default.
- W3092776627 modified "2023-10-10" @default.
- W3092776627 title "Existence and Multiplicity of Solutions to a Class of Fractional p-Laplacian Equations of Schrödinger-Type with Concave-Convex Nonlinearities in ℝN" @default.
- W3092776627 cites W1446988018 @default.
- W3092776627 cites W1942587350 @default.
- W3092776627 cites W1967746005 @default.
- W3092776627 cites W1972272550 @default.
- W3092776627 cites W1976659984 @default.
- W3092776627 cites W1977796932 @default.
- W3092776627 cites W1981288703 @default.
- W3092776627 cites W1982258462 @default.
- W3092776627 cites W1984330245 @default.
- W3092776627 cites W1986428751 @default.
- W3092776627 cites W1988167079 @default.
- W3092776627 cites W2011095781 @default.
- W3092776627 cites W2018637913 @default.
- W3092776627 cites W2026106782 @default.
- W3092776627 cites W2033391023 @default.
- W3092776627 cites W2043072022 @default.
- W3092776627 cites W2050801808 @default.
- W3092776627 cites W2052140136 @default.
- W3092776627 cites W2060945009 @default.
- W3092776627 cites W2062701522 @default.
- W3092776627 cites W2083276861 @default.
- W3092776627 cites W2091817103 @default.
- W3092776627 cites W2111271983 @default.
- W3092776627 cites W2142051548 @default.
- W3092776627 cites W2238039310 @default.
- W3092776627 cites W2257344509 @default.
- W3092776627 cites W2280421917 @default.
- W3092776627 cites W2433816453 @default.
- W3092776627 cites W2553956113 @default.
- W3092776627 cites W2782589491 @default.
- W3092776627 cites W2887005712 @default.
- W3092776627 cites W2896738905 @default.
- W3092776627 cites W2931381659 @default.
- W3092776627 cites W2955053844 @default.
- W3092776627 cites W2963774931 @default.
- W3092776627 cites W2976835964 @default.
- W3092776627 cites W3124607094 @default.
- W3092776627 cites W4238827312 @default.
- W3092776627 cites W4377084343 @default.
- W3092776627 cites W67952865 @default.
- W3092776627 doi "https://doi.org/10.3390/math8101792" @default.
- W3092776627 hasPublicationYear "2020" @default.
- W3092776627 type Work @default.
- W3092776627 sameAs 3092776627 @default.
- W3092776627 citedByCount "4" @default.
- W3092776627 countsByYear W30927766272021 @default.
- W3092776627 countsByYear W30927766272022 @default.
- W3092776627 countsByYear W30927766272023 @default.
- W3092776627 crossrefType "journal-article" @default.
- W3092776627 hasAuthorship W3092776627A5014141624 @default.
- W3092776627 hasBestOaLocation W30927766271 @default.
- W3092776627 hasConcept C104317684 @default.
- W3092776627 hasConcept C112680207 @default.
- W3092776627 hasConcept C114614502 @default.
- W3092776627 hasConcept C121332964 @default.
- W3092776627 hasConcept C134306372 @default.
- W3092776627 hasConcept C14036430 @default.
- W3092776627 hasConcept C145446738 @default.
- W3092776627 hasConcept C156004811 @default.
- W3092776627 hasConcept C158448853 @default.
- W3092776627 hasConcept C158622935 @default.
- W3092776627 hasConcept C165700671 @default.
- W3092776627 hasConcept C17020691 @default.
- W3092776627 hasConcept C185592680 @default.
- W3092776627 hasConcept C18903297 @default.
- W3092776627 hasConcept C202444582 @default.
- W3092776627 hasConcept C2524010 @default.
- W3092776627 hasConcept C2775913539 @default.
- W3092776627 hasConcept C2777299769 @default.
- W3092776627 hasConcept C2779779452 @default.
- W3092776627 hasConcept C33923547 @default.
- W3092776627 hasConcept C37914503 @default.
- W3092776627 hasConcept C55493867 @default.
- W3092776627 hasConcept C62520636 @default.
- W3092776627 hasConcept C78458016 @default.
- W3092776627 hasConcept C86339819 @default.
- W3092776627 hasConcept C86803240 @default.
- W3092776627 hasConceptScore W3092776627C104317684 @default.
- W3092776627 hasConceptScore W3092776627C112680207 @default.
- W3092776627 hasConceptScore W3092776627C114614502 @default.
- W3092776627 hasConceptScore W3092776627C121332964 @default.
- W3092776627 hasConceptScore W3092776627C134306372 @default.
- W3092776627 hasConceptScore W3092776627C14036430 @default.
- W3092776627 hasConceptScore W3092776627C145446738 @default.
- W3092776627 hasConceptScore W3092776627C156004811 @default.
- W3092776627 hasConceptScore W3092776627C158448853 @default.
- W3092776627 hasConceptScore W3092776627C158622935 @default.
- W3092776627 hasConceptScore W3092776627C165700671 @default.
- W3092776627 hasConceptScore W3092776627C17020691 @default.
- W3092776627 hasConceptScore W3092776627C185592680 @default.
- W3092776627 hasConceptScore W3092776627C18903297 @default.
- W3092776627 hasConceptScore W3092776627C202444582 @default.