Matches in SemOpenAlex for { <https://semopenalex.org/work/W3092778117> ?p ?o ?g. }
- W3092778117 abstract "Abstract Background Emergency room reports pose specific challenges to natural language processing techniques. In this setting, violence episodes on women, elderly and children are often under-reported. Categorizing textual descriptions as containing violence-related injuries (V) vs . non-violence-related injuries (NV) is thus a relevant task to the ends of devising alerting mechanisms to track (and prevent) violence episodes. Methods We present ViDeS (so dubbed after Violence Detection System ), a system to detect episodes of violence from narrative texts in emergency room reports. It employs a deep neural network for categorizing textual ER reports data, and complements such output by making explicit which elements corroborate the interpretation of the record as reporting about violence-related injuries. To these ends we designed a novel hybrid technique for filling semantic frames that employs distributed representations of terms herein, along with syntactic and semantic information. The system has been validated on real data annotated with two sorts of information: about the presence vs. absence of violence-related injuries, and about some semantic roles that can be interpreted as major cues for violent episodes, such as the agent that committed violence, the victim, the body district involved, etc.. The employed dataset contains over 150K records annotated with class (V,NV) information, and 200 records with finer-grained information on the aforementioned semantic roles. Results We used data coming from an Italian branch of the EU-Injury Database (EU-IDB) project, compiled by hospital staff. Categorization figures approach full precision and recall for negative cases and.97 precision and.94 recall on positive cases. As regards as the recognition of semantic roles, we recorded an accuracy varying from.28 to.90 according to the semantic roles involved. Moreover, the system allowed unveiling annotation errors committed by hospital staff. Conclusions Explaining systems’ results, so to make their output more comprehensible and convincing, is today necessary for AI systems. Our proposal is to combine distributed and symbolic (frame-like) representations as a possible answer to such pressing request for interpretability. Although presently focused on the medical domain, the proposed methodology is general and, in principle, it can be extended to further application areas and categorization tasks." @default.
- W3092778117 created "2020-10-22" @default.
- W3092778117 creator A5006446756 @default.
- W3092778117 creator A5007187027 @default.
- W3092778117 creator A5009631801 @default.
- W3092778117 creator A5029383863 @default.
- W3092778117 creator A5032076903 @default.
- W3092778117 creator A5047309744 @default.
- W3092778117 creator A5063225494 @default.
- W3092778117 date "2020-10-15" @default.
- W3092778117 modified "2023-10-16" @default.
- W3092778117 title "Violence detection explanation via semantic roles embeddings" @default.
- W3092778117 cites W1487234737 @default.
- W3092778117 cites W1496355506 @default.
- W3092778117 cites W1504636771 @default.
- W3092778117 cites W1559379489 @default.
- W3092778117 cites W1597896561 @default.
- W3092778117 cites W1973488901 @default.
- W3092778117 cites W2027248962 @default.
- W3092778117 cites W2051390224 @default.
- W3092778117 cites W2080635174 @default.
- W3092778117 cites W2081580037 @default.
- W3092778117 cites W2108366050 @default.
- W3092778117 cites W2116502454 @default.
- W3092778117 cites W2124968776 @default.
- W3092778117 cites W2129414328 @default.
- W3092778117 cites W2133761762 @default.
- W3092778117 cites W2151170651 @default.
- W3092778117 cites W2168963845 @default.
- W3092778117 cites W2250861254 @default.
- W3092778117 cites W2283196293 @default.
- W3092778117 cites W2397198482 @default.
- W3092778117 cites W2493916176 @default.
- W3092778117 cites W2496638848 @default.
- W3092778117 cites W2608743542 @default.
- W3092778117 cites W2610911602 @default.
- W3092778117 cites W2612872092 @default.
- W3092778117 cites W2664496537 @default.
- W3092778117 cites W2744790096 @default.
- W3092778117 cites W2804962957 @default.
- W3092778117 cites W2809683153 @default.
- W3092778117 cites W2963095307 @default.
- W3092778117 cites W2981948118 @default.
- W3092778117 cites W2992706359 @default.
- W3092778117 cites W3000716014 @default.
- W3092778117 cites W3100711616 @default.
- W3092778117 cites W3103882602 @default.
- W3092778117 cites W4300032027 @default.
- W3092778117 doi "https://doi.org/10.1186/s12911-020-01237-4" @default.
- W3092778117 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7559980" @default.
- W3092778117 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33059690" @default.
- W3092778117 hasPublicationYear "2020" @default.
- W3092778117 type Work @default.
- W3092778117 sameAs 3092778117 @default.
- W3092778117 citedByCount "7" @default.
- W3092778117 countsByYear W30927781172020 @default.
- W3092778117 countsByYear W30927781172021 @default.
- W3092778117 countsByYear W30927781172022 @default.
- W3092778117 countsByYear W30927781172023 @default.
- W3092778117 crossrefType "journal-article" @default.
- W3092778117 hasAuthorship W3092778117A5006446756 @default.
- W3092778117 hasAuthorship W3092778117A5007187027 @default.
- W3092778117 hasAuthorship W3092778117A5009631801 @default.
- W3092778117 hasAuthorship W3092778117A5029383863 @default.
- W3092778117 hasAuthorship W3092778117A5032076903 @default.
- W3092778117 hasAuthorship W3092778117A5047309744 @default.
- W3092778117 hasAuthorship W3092778117A5063225494 @default.
- W3092778117 hasBestOaLocation W30927781171 @default.
- W3092778117 hasConcept C100660578 @default.
- W3092778117 hasConcept C127413603 @default.
- W3092778117 hasConcept C138885662 @default.
- W3092778117 hasConcept C154945302 @default.
- W3092778117 hasConcept C15744967 @default.
- W3092778117 hasConcept C180747234 @default.
- W3092778117 hasConcept C199033989 @default.
- W3092778117 hasConcept C201995342 @default.
- W3092778117 hasConcept C204321447 @default.
- W3092778117 hasConcept C23123220 @default.
- W3092778117 hasConcept C2777212361 @default.
- W3092778117 hasConcept C2780451532 @default.
- W3092778117 hasConcept C3017944768 @default.
- W3092778117 hasConcept C41008148 @default.
- W3092778117 hasConcept C41895202 @default.
- W3092778117 hasConcept C545542383 @default.
- W3092778117 hasConcept C71924100 @default.
- W3092778117 hasConcept C94124525 @default.
- W3092778117 hasConceptScore W3092778117C100660578 @default.
- W3092778117 hasConceptScore W3092778117C127413603 @default.
- W3092778117 hasConceptScore W3092778117C138885662 @default.
- W3092778117 hasConceptScore W3092778117C154945302 @default.
- W3092778117 hasConceptScore W3092778117C15744967 @default.
- W3092778117 hasConceptScore W3092778117C180747234 @default.
- W3092778117 hasConceptScore W3092778117C199033989 @default.
- W3092778117 hasConceptScore W3092778117C201995342 @default.
- W3092778117 hasConceptScore W3092778117C204321447 @default.
- W3092778117 hasConceptScore W3092778117C23123220 @default.
- W3092778117 hasConceptScore W3092778117C2777212361 @default.
- W3092778117 hasConceptScore W3092778117C2780451532 @default.
- W3092778117 hasConceptScore W3092778117C3017944768 @default.
- W3092778117 hasConceptScore W3092778117C41008148 @default.