Matches in SemOpenAlex for { <https://semopenalex.org/work/W3092787061> ?p ?o ?g. }
- W3092787061 endingPage "103387" @default.
- W3092787061 startingPage "103387" @default.
- W3092787061 abstract "The detrimental effects of insider trading on the financial markets and the economy are well documented. However, resource-constrained regulators face a great challenge in detecting insider trading and enforcing insider trading laws. We develop a text analytics framework that uses machine learning to predict ex-ante potentially opportunistic insider trading (using actual insider trading allegation by shareholders as the proxy) from corporate textual disclosures. Distinct from typical black-box neural network models, which have difficulty tracing a prediction back to key features, our approach combines the predictive power of deep learning with attention mechanisms to provide interpretability to the model. Further, our model utilizes representations from a business proximity network and incorporates the temporal variations of a firm’s financial disclosures. The empirical results offer new insights into insider trading and provide practical implications. Overall, we contribute to the literature by reconciling performance and interpretability in predictive analytics. Our study also informs the practice by proposing a new method for regulators to examine a large amount of text in order to monitor and predict financial misconduct." @default.
- W3092787061 created "2020-10-22" @default.
- W3092787061 creator A5002160661 @default.
- W3092787061 creator A5074616839 @default.
- W3092787061 creator A5088161536 @default.
- W3092787061 creator A5090773800 @default.
- W3092787061 date "2020-12-01" @default.
- W3092787061 modified "2023-10-02" @default.
- W3092787061 title "Predicting shareholder litigation on insider trading from financial text: An interpretable deep learning approach" @default.
- W3092787061 cites W1501960888 @default.
- W3092787061 cites W1581782493 @default.
- W3092787061 cites W1602011302 @default.
- W3092787061 cites W1961953963 @default.
- W3092787061 cites W1971108646 @default.
- W3092787061 cites W1971270732 @default.
- W3092787061 cites W1992522270 @default.
- W3092787061 cites W1993322021 @default.
- W3092787061 cites W2011328858 @default.
- W3092787061 cites W2021993444 @default.
- W3092787061 cites W2038663319 @default.
- W3092787061 cites W2052317629 @default.
- W3092787061 cites W2059712865 @default.
- W3092787061 cites W2068448011 @default.
- W3092787061 cites W2085766370 @default.
- W3092787061 cites W2109282075 @default.
- W3092787061 cites W2109769350 @default.
- W3092787061 cites W2112392142 @default.
- W3092787061 cites W2118901837 @default.
- W3092787061 cites W2134884530 @default.
- W3092787061 cites W2138642847 @default.
- W3092787061 cites W2146016545 @default.
- W3092787061 cites W2147308894 @default.
- W3092787061 cites W2147824299 @default.
- W3092787061 cites W2147876157 @default.
- W3092787061 cites W2148171397 @default.
- W3092787061 cites W2153349750 @default.
- W3092787061 cites W2160327429 @default.
- W3092787061 cites W2167332641 @default.
- W3092787061 cites W2172852798 @default.
- W3092787061 cites W2328176404 @default.
- W3092787061 cites W2470673105 @default.
- W3092787061 cites W2562909420 @default.
- W3092787061 cites W2563585333 @default.
- W3092787061 cites W2565549934 @default.
- W3092787061 cites W2584722588 @default.
- W3092787061 cites W2734391502 @default.
- W3092787061 cites W2749749198 @default.
- W3092787061 cites W2795296342 @default.
- W3092787061 cites W2795321837 @default.
- W3092787061 cites W2802789949 @default.
- W3092787061 cites W2803549048 @default.
- W3092787061 cites W2804045672 @default.
- W3092787061 cites W2809233634 @default.
- W3092787061 cites W2884437772 @default.
- W3092787061 cites W2894435215 @default.
- W3092787061 cites W2894746719 @default.
- W3092787061 cites W2897596136 @default.
- W3092787061 cites W2899106591 @default.
- W3092787061 cites W2899165835 @default.
- W3092787061 cites W2902827029 @default.
- W3092787061 cites W2903825036 @default.
- W3092787061 cites W2905146576 @default.
- W3092787061 cites W2919115771 @default.
- W3092787061 cites W2946396720 @default.
- W3092787061 cites W2955853369 @default.
- W3092787061 cites W2984057763 @default.
- W3092787061 cites W2986968371 @default.
- W3092787061 cites W3005771943 @default.
- W3092787061 cites W3121229166 @default.
- W3092787061 cites W3121353682 @default.
- W3092787061 cites W3121494306 @default.
- W3092787061 cites W3121563389 @default.
- W3092787061 cites W3122169829 @default.
- W3092787061 cites W3122370222 @default.
- W3092787061 cites W3122979628 @default.
- W3092787061 cites W3123123374 @default.
- W3092787061 cites W3123897291 @default.
- W3092787061 cites W3124125555 @default.
- W3092787061 cites W3124180421 @default.
- W3092787061 cites W3124304323 @default.
- W3092787061 cites W3125370119 @default.
- W3092787061 cites W3125372543 @default.
- W3092787061 cites W3125484325 @default.
- W3092787061 cites W3125512896 @default.
- W3092787061 cites W3125753879 @default.
- W3092787061 cites W3125952890 @default.
- W3092787061 cites W3126094157 @default.
- W3092787061 cites W3150796314 @default.
- W3092787061 cites W3151685851 @default.
- W3092787061 doi "https://doi.org/10.1016/j.im.2020.103387" @default.
- W3092787061 hasPublicationYear "2020" @default.
- W3092787061 type Work @default.
- W3092787061 sameAs 3092787061 @default.
- W3092787061 citedByCount "12" @default.
- W3092787061 countsByYear W30927870612021 @default.
- W3092787061 countsByYear W30927870612022 @default.
- W3092787061 countsByYear W30927870612023 @default.
- W3092787061 crossrefType "journal-article" @default.