Matches in SemOpenAlex for { <https://semopenalex.org/work/W3092835774> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W3092835774 abstract "Music source separation represents the task of extracting all the instruments from a given song. Recent breakthroughs on this challenge have gravitated around a single dataset, MUSDB, only limited to four instrument classes. Larger datasets and more instruments are costly and time-consuming in collecting data and training deep neural networks (DNNs). In this work, we propose a fast method to evaluate the separability of instruments in any dataset without training and tuning a DNN.This separability measure helps to select appropriate samples for the efficient training of neural networks. Based on the oracle principle with an ideal ratio mask, our approach is an excellent proxy to estimate the separation performances of state-of-the-art deep learning approaches such as TasNet or Open-Unmix.Our results contribute to revealing two essential points for audio source separation: 1) the ideal ratio mask, although light and straightforward, provides an accurate measure of the audio separability performance of recent neural nets, and 2) new end-to-end learning methods such as Tasnet, that operate directly on waveforms, are, in fact, internally building a Time-Frequency (TF) representation, so that they encounter the same limitations as the TF based-methods when separating audio pattern overlapping in the TF plane." @default.
- W3092835774 created "2020-10-22" @default.
- W3092835774 creator A5003558571 @default.
- W3092835774 creator A5078878841 @default.
- W3092835774 creator A5090441928 @default.
- W3092835774 date "2022-03-28" @default.
- W3092835774 modified "2023-10-05" @default.
- W3092835774 title "Fast accuracy estimation of deep learning based multi-class musical source separation" @default.
- W3092835774 cites W1561135842 @default.
- W3092835774 cites W1991749780 @default.
- W3092835774 cites W2020335482 @default.
- W3092835774 cites W2105892554 @default.
- W3092835774 cites W2119518695 @default.
- W3092835774 cites W2159898352 @default.
- W3092835774 cites W2198523376 @default.
- W3092835774 cites W2774707525 @default.
- W3092835774 cites W2952218014 @default.
- W3092835774 cites W2963452667 @default.
- W3092835774 cites W2963751183 @default.
- W3092835774 cites W2963992487 @default.
- W3092835774 cites W2964058413 @default.
- W3092835774 cites W2972411915 @default.
- W3092835774 cites W2990594533 @default.
- W3092835774 cites W3015753416 @default.
- W3092835774 cites W3037149862 @default.
- W3092835774 cites W3046871516 @default.
- W3092835774 doi "https://doi.org/10.7557/18.6241" @default.
- W3092835774 hasPublicationYear "2022" @default.
- W3092835774 type Work @default.
- W3092835774 sameAs 3092835774 @default.
- W3092835774 citedByCount "0" @default.
- W3092835774 crossrefType "journal-article" @default.
- W3092835774 hasAuthorship W3092835774A5003558571 @default.
- W3092835774 hasAuthorship W3092835774A5078878841 @default.
- W3092835774 hasAuthorship W3092835774A5090441928 @default.
- W3092835774 hasBestOaLocation W30928357741 @default.
- W3092835774 hasConcept C108583219 @default.
- W3092835774 hasConcept C115903868 @default.
- W3092835774 hasConcept C119857082 @default.
- W3092835774 hasConcept C124101348 @default.
- W3092835774 hasConcept C153180895 @default.
- W3092835774 hasConcept C154945302 @default.
- W3092835774 hasConcept C2776061190 @default.
- W3092835774 hasConcept C2776864781 @default.
- W3092835774 hasConcept C2780009758 @default.
- W3092835774 hasConcept C41008148 @default.
- W3092835774 hasConcept C50644808 @default.
- W3092835774 hasConcept C55166926 @default.
- W3092835774 hasConceptScore W3092835774C108583219 @default.
- W3092835774 hasConceptScore W3092835774C115903868 @default.
- W3092835774 hasConceptScore W3092835774C119857082 @default.
- W3092835774 hasConceptScore W3092835774C124101348 @default.
- W3092835774 hasConceptScore W3092835774C153180895 @default.
- W3092835774 hasConceptScore W3092835774C154945302 @default.
- W3092835774 hasConceptScore W3092835774C2776061190 @default.
- W3092835774 hasConceptScore W3092835774C2776864781 @default.
- W3092835774 hasConceptScore W3092835774C2780009758 @default.
- W3092835774 hasConceptScore W3092835774C41008148 @default.
- W3092835774 hasConceptScore W3092835774C50644808 @default.
- W3092835774 hasConceptScore W3092835774C55166926 @default.
- W3092835774 hasLocation W30928357741 @default.
- W3092835774 hasLocation W30928357742 @default.
- W3092835774 hasOpenAccess W3092835774 @default.
- W3092835774 hasPrimaryLocation W30928357741 @default.
- W3092835774 hasRelatedWork W2795261237 @default.
- W3092835774 hasRelatedWork W3014300295 @default.
- W3092835774 hasRelatedWork W3164822677 @default.
- W3092835774 hasRelatedWork W4223943233 @default.
- W3092835774 hasRelatedWork W4225161397 @default.
- W3092835774 hasRelatedWork W4312200629 @default.
- W3092835774 hasRelatedWork W4360585206 @default.
- W3092835774 hasRelatedWork W4364306694 @default.
- W3092835774 hasRelatedWork W4380075502 @default.
- W3092835774 hasRelatedWork W4380086463 @default.
- W3092835774 hasVolume "3" @default.
- W3092835774 isParatext "false" @default.
- W3092835774 isRetracted "false" @default.
- W3092835774 magId "3092835774" @default.
- W3092835774 workType "article" @default.