Matches in SemOpenAlex for { <https://semopenalex.org/work/W3092859384> ?p ?o ?g. }
- W3092859384 endingPage "1162" @default.
- W3092859384 startingPage "1162" @default.
- W3092859384 abstract "Time series prediction has been widely applied to the finance industry in applications such as stock market price and commodity price forecasting. Machine learning methods have been widely used in financial time series prediction in recent years. How to label financial time series data to determine the prediction accuracy of machine learning models and subsequently determine final investment returns is a hot topic. Existing labeling methods of financial time series mainly label data by comparing the current data with those of a short time period in the future. However, financial time series data are typically non-linear with obvious short-term randomness. Therefore, these labeling methods have not captured the continuous trend features of financial time series data, leading to a difference between their labeling results and real market trends. In this paper, a new labeling method called “continuous trend labeling” is proposed to address the above problem. In the feature preprocessing stage, this paper proposed a new method that can avoid the problem of look-ahead bias in traditional data standardization or normalization processes. Then, a detailed logical explanation was given, the definition of continuous trend labeling was proposed and also an automatic labeling algorithm was given to extract the continuous trend features of financial time series data. Experiments on the Shanghai Composite Index and Shenzhen Component Index and some stocks of China showed that our labeling method is a much better state-of-the-art labeling method in terms of classification accuracy and some other classification evaluation metrics. The results of the paper also proved that deep learning models such as LSTM and GRU are more suitable for dealing with the prediction of financial time series data." @default.
- W3092859384 created "2020-10-22" @default.
- W3092859384 creator A5014238603 @default.
- W3092859384 creator A5066028215 @default.
- W3092859384 creator A5069706913 @default.
- W3092859384 creator A5083912603 @default.
- W3092859384 creator A5089698613 @default.
- W3092859384 date "2020-10-15" @default.
- W3092859384 modified "2023-10-16" @default.
- W3092859384 title "A Labeling Method for Financial Time Series Prediction Based on Trends" @default.
- W3092859384 cites W1530572332 @default.
- W3092859384 cites W1815264562 @default.
- W3092859384 cites W1862394037 @default.
- W3092859384 cites W1977006273 @default.
- W3092859384 cites W1997994299 @default.
- W3092859384 cites W2025053102 @default.
- W3092859384 cites W2027218366 @default.
- W3092859384 cites W2030191558 @default.
- W3092859384 cites W2049571914 @default.
- W3092859384 cites W2064675550 @default.
- W3092859384 cites W2071192814 @default.
- W3092859384 cites W2095606599 @default.
- W3092859384 cites W2106052345 @default.
- W3092859384 cites W2111744004 @default.
- W3092859384 cites W2117074724 @default.
- W3092859384 cites W2145344497 @default.
- W3092859384 cites W2172064003 @default.
- W3092859384 cites W2216946510 @default.
- W3092859384 cites W2330219538 @default.
- W3092859384 cites W2517102217 @default.
- W3092859384 cites W2520319246 @default.
- W3092859384 cites W2592184791 @default.
- W3092859384 cites W2593842564 @default.
- W3092859384 cites W2607162077 @default.
- W3092859384 cites W2784381726 @default.
- W3092859384 cites W2790958077 @default.
- W3092859384 cites W2791764991 @default.
- W3092859384 cites W2801382631 @default.
- W3092859384 cites W2804968338 @default.
- W3092859384 cites W2884486887 @default.
- W3092859384 cites W2889230014 @default.
- W3092859384 cites W2891373009 @default.
- W3092859384 cites W2897113013 @default.
- W3092859384 cites W2900880305 @default.
- W3092859384 cites W2900882012 @default.
- W3092859384 cites W2902087482 @default.
- W3092859384 cites W2907228515 @default.
- W3092859384 cites W2907708405 @default.
- W3092859384 cites W2910159406 @default.
- W3092859384 cites W2911077059 @default.
- W3092859384 cites W2911141499 @default.
- W3092859384 cites W2912087029 @default.
- W3092859384 cites W2912509860 @default.
- W3092859384 cites W2916752133 @default.
- W3092859384 cites W2917717575 @default.
- W3092859384 cites W2920960394 @default.
- W3092859384 cites W2921973374 @default.
- W3092859384 cites W2922601741 @default.
- W3092859384 cites W2928751487 @default.
- W3092859384 cites W2937024709 @default.
- W3092859384 cites W2942954122 @default.
- W3092859384 cites W2948456504 @default.
- W3092859384 cites W2948490758 @default.
- W3092859384 cites W2950870576 @default.
- W3092859384 cites W2951138942 @default.
- W3092859384 cites W2951494616 @default.
- W3092859384 cites W2952342634 @default.
- W3092859384 cites W2956569383 @default.
- W3092859384 cites W2957390582 @default.
- W3092859384 cites W2959298257 @default.
- W3092859384 cites W2960810890 @default.
- W3092859384 cites W2961574599 @default.
- W3092859384 cites W2969543086 @default.
- W3092859384 cites W2969886070 @default.
- W3092859384 cites W2971106942 @default.
- W3092859384 cites W2999233312 @default.
- W3092859384 cites W3002316539 @default.
- W3092859384 cites W3005880472 @default.
- W3092859384 cites W3006426198 @default.
- W3092859384 cites W3007099576 @default.
- W3092859384 cites W3007237875 @default.
- W3092859384 cites W3010788550 @default.
- W3092859384 cites W3014437714 @default.
- W3092859384 cites W3027003065 @default.
- W3092859384 cites W3034330439 @default.
- W3092859384 cites W3048630347 @default.
- W3092859384 cites W3081786332 @default.
- W3092859384 cites W3101278643 @default.
- W3092859384 cites W3121573664 @default.
- W3092859384 cites W3124185353 @default.
- W3092859384 cites W3125462345 @default.
- W3092859384 doi "https://doi.org/10.3390/e22101162" @default.
- W3092859384 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7597331" @default.
- W3092859384 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33286931" @default.
- W3092859384 hasPublicationYear "2020" @default.
- W3092859384 type Work @default.
- W3092859384 sameAs 3092859384 @default.
- W3092859384 citedByCount "31" @default.