Matches in SemOpenAlex for { <https://semopenalex.org/work/W3092933006> ?p ?o ?g. }
- W3092933006 abstract "To endow machines with the ability to perceive the real-world in a three dimensional representation as we do as humans is a fundamental and long-standing topic in Artificial Intelligence. Given different types of visual inputs such as images or point clouds acquired by 2D/3D sensors, one important goal is to understand the geometric structure and semantics of the 3D environment. Traditional approaches usually leverage hand-crafted features to estimate the shape and semantics of objects or scenes. However, they are difficult to generalize to novel objects and scenarios, and struggle to overcome critical issues caused by visual occlusions. By contrast, we aim to understand scenes and the objects within them by learning general and robust representations using deep neural networks, trained on large-scale real-world 3D data. To achieve these aims, this thesis makes three core contributions from object-level 3D shape estimation from single or multiple views to scene-level semantic understanding." @default.
- W3092933006 created "2020-10-22" @default.
- W3092933006 creator A5005662573 @default.
- W3092933006 date "2020-10-19" @default.
- W3092933006 modified "2023-09-27" @default.
- W3092933006 title "Learning to Reconstruct and Segment 3D Objects." @default.
- W3092933006 cites W1514535095 @default.
- W3092933006 cites W1563354748 @default.
- W3092933006 cites W1644641054 @default.
- W3092933006 cites W1691728462 @default.
- W3092933006 cites W1861492603 @default.
- W3092933006 cites W1899504021 @default.
- W3092933006 cites W1901129140 @default.
- W3092933006 cites W1915142102 @default.
- W3092933006 cites W1920022804 @default.
- W3092933006 cites W1927784829 @default.
- W3092933006 cites W1953319329 @default.
- W3092933006 cites W1959608418 @default.
- W3092933006 cites W1970260218 @default.
- W3092933006 cites W1972671602 @default.
- W3092933006 cites W1973016074 @default.
- W3092933006 cites W1980635903 @default.
- W3092933006 cites W1981349497 @default.
- W3092933006 cites W1986528120 @default.
- W3092933006 cites W1987648924 @default.
- W3092933006 cites W1990345222 @default.
- W3092933006 cites W1992642990 @default.
- W3092933006 cites W2009422376 @default.
- W3092933006 cites W2013472030 @default.
- W3092933006 cites W2027600454 @default.
- W3092933006 cites W2028541416 @default.
- W3092933006 cites W2031489346 @default.
- W3092933006 cites W2033819227 @default.
- W3092933006 cites W2041670460 @default.
- W3092933006 cites W2049351243 @default.
- W3092933006 cites W2052069724 @default.
- W3092933006 cites W2060206980 @default.
- W3092933006 cites W2067191022 @default.
- W3092933006 cites W2071906076 @default.
- W3092933006 cites W2072202468 @default.
- W3092933006 cites W2086984226 @default.
- W3092933006 cites W2097307110 @default.
- W3092933006 cites W2097374608 @default.
- W3092933006 cites W2097696373 @default.
- W3092933006 cites W2099443716 @default.
- W3092933006 cites W2099471712 @default.
- W3092933006 cites W2104657103 @default.
- W3092933006 cites W2105303354 @default.
- W3092933006 cites W2107198582 @default.
- W3092933006 cites W2107878631 @default.
- W3092933006 cites W2108134361 @default.
- W3092933006 cites W2124313187 @default.
- W3092933006 cites W2125389028 @default.
- W3092933006 cites W2151103935 @default.
- W3092933006 cites W2152671441 @default.
- W3092933006 cites W2160126058 @default.
- W3092933006 cites W2160547335 @default.
- W3092933006 cites W2160821342 @default.
- W3092933006 cites W2163605009 @default.
- W3092933006 cites W2187027887 @default.
- W3092933006 cites W2187089797 @default.
- W3092933006 cites W2190691619 @default.
- W3092933006 cites W2194775991 @default.
- W3092933006 cites W2201092681 @default.
- W3092933006 cites W2204257188 @default.
- W3092933006 cites W2217143704 @default.
- W3092933006 cites W2222512263 @default.
- W3092933006 cites W2242818861 @default.
- W3092933006 cites W2336961836 @default.
- W3092933006 cites W2338532005 @default.
- W3092933006 cites W2342277278 @default.
- W3092933006 cites W2405756170 @default.
- W3092933006 cites W2444097022 @default.
- W3092933006 cites W2460657278 @default.
- W3092933006 cites W2471962767 @default.
- W3092933006 cites W2519126067 @default.
- W3092933006 cites W2520179930 @default.
- W3092933006 cites W2524140598 @default.
- W3092933006 cites W2529969239 @default.
- W3092933006 cites W2530372461 @default.
- W3092933006 cites W2536680313 @default.
- W3092933006 cites W2546066744 @default.
- W3092933006 cites W2548275288 @default.
- W3092933006 cites W2551540143 @default.
- W3092933006 cites W2555618208 @default.
- W3092933006 cites W2556802233 @default.
- W3092933006 cites W2557465155 @default.
- W3092933006 cites W2558294288 @default.
- W3092933006 cites W2559882727 @default.
- W3092933006 cites W2560609797 @default.
- W3092933006 cites W2560722161 @default.
- W3092933006 cites W2563685048 @default.
- W3092933006 cites W2580705004 @default.
- W3092933006 cites W2582734987 @default.
- W3092933006 cites W2594519801 @default.
- W3092933006 cites W2603429625 @default.
- W3092933006 cites W2605701576 @default.
- W3092933006 cites W2606840594 @default.
- W3092933006 cites W2609719703 @default.
- W3092933006 cites W2613718673 @default.