Matches in SemOpenAlex for { <https://semopenalex.org/work/W3092942425> ?p ?o ?g. }
- W3092942425 endingPage "113995" @default.
- W3092942425 startingPage "113995" @default.
- W3092942425 abstract "Long non-coding RNAs (lncRNAs) refer to functional RNA molecules with a length more than 200 nucleotides and have minimal or no function to encode proteins. In recent years, more studies show that lncRNAs subcellular localization has valuable clues for their biological functions. So it is count for much to identify lncRNAs subcellular localization. In this paper, a novel statistical model named KD-KLNMF is constructed to predict lncRNAs subcellular localization. Firstly, k-mer and dinucleotide-based spatial autocorrelation are incorporated as the feature vector. Then, Synthetic Minority Over-sampling Technique is used to deal with the imbalance dataset. Next, Kullback-Leibler divergence-based nonnegative matrix factorization is applied to select optimal features. And then we utilize support vector machine as the classifier after comparing with other classifiers. Finally, the jackknife test is performed to evaluate the model. The overall accuracies reach 97.24% and 92.86% on training dataset and independent dataset, respectively. The results are better than the previous methods, which indicate that our model will be a useful and feasible tool to identify lncRNAs subcellular localization. The datasets and source code are freely available at https://github.com/HuijuanQiao/KD-KLNMF." @default.
- W3092942425 created "2020-10-22" @default.
- W3092942425 creator A5052771811 @default.
- W3092942425 creator A5065997024 @default.
- W3092942425 date "2020-12-01" @default.
- W3092942425 modified "2023-10-15" @default.
- W3092942425 title "KD-KLNMF: Identification of lncRNAs subcellular localization with multiple features and nonnegative matrix factorization" @default.
- W3092942425 cites W1186776093 @default.
- W3092942425 cites W1485819570 @default.
- W3092942425 cites W1494484168 @default.
- W3092942425 cites W1605688901 @default.
- W3092942425 cites W1612034467 @default.
- W3092942425 cites W1902027874 @default.
- W3092942425 cites W1918744929 @default.
- W3092942425 cites W1971057981 @default.
- W3092942425 cites W1977927254 @default.
- W3092942425 cites W1978586737 @default.
- W3092942425 cites W1993791542 @default.
- W3092942425 cites W1993996526 @default.
- W3092942425 cites W2000629769 @default.
- W3092942425 cites W2004132756 @default.
- W3092942425 cites W2010979687 @default.
- W3092942425 cites W2012338406 @default.
- W3092942425 cites W2013887116 @default.
- W3092942425 cites W2016579482 @default.
- W3092942425 cites W2018235493 @default.
- W3092942425 cites W2018995823 @default.
- W3092942425 cites W2022978200 @default.
- W3092942425 cites W2031750380 @default.
- W3092942425 cites W2039290119 @default.
- W3092942425 cites W2046842005 @default.
- W3092942425 cites W2056108729 @default.
- W3092942425 cites W2071128523 @default.
- W3092942425 cites W2079177468 @default.
- W3092942425 cites W2109268993 @default.
- W3092942425 cites W2120026469 @default.
- W3092942425 cites W2124374092 @default.
- W3092942425 cites W2145957695 @default.
- W3092942425 cites W2148143831 @default.
- W3092942425 cites W2148629421 @default.
- W3092942425 cites W2153635508 @default.
- W3092942425 cites W2155653793 @default.
- W3092942425 cites W2156125289 @default.
- W3092942425 cites W2157976734 @default.
- W3092942425 cites W2170565120 @default.
- W3092942425 cites W2205505631 @default.
- W3092942425 cites W2259090596 @default.
- W3092942425 cites W2270702445 @default.
- W3092942425 cites W2278741011 @default.
- W3092942425 cites W2285433275 @default.
- W3092942425 cites W2321308395 @default.
- W3092942425 cites W2399767476 @default.
- W3092942425 cites W2413285763 @default.
- W3092942425 cites W2523062606 @default.
- W3092942425 cites W2605516250 @default.
- W3092942425 cites W2614649942 @default.
- W3092942425 cites W2617606374 @default.
- W3092942425 cites W2737592062 @default.
- W3092942425 cites W2745542388 @default.
- W3092942425 cites W2745811851 @default.
- W3092942425 cites W2756128645 @default.
- W3092942425 cites W2789926271 @default.
- W3092942425 cites W2791600746 @default.
- W3092942425 cites W2808950870 @default.
- W3092942425 cites W2890517686 @default.
- W3092942425 cites W2891164245 @default.
- W3092942425 cites W2902902239 @default.
- W3092942425 cites W2911964244 @default.
- W3092942425 cites W2912390193 @default.
- W3092942425 cites W2954398424 @default.
- W3092942425 cites W2960540748 @default.
- W3092942425 cites W2963668037 @default.
- W3092942425 cites W2964607632 @default.
- W3092942425 cites W2971564841 @default.
- W3092942425 cites W2972075796 @default.
- W3092942425 cites W3004732066 @default.
- W3092942425 cites W3005067054 @default.
- W3092942425 cites W3006475160 @default.
- W3092942425 cites W3009879996 @default.
- W3092942425 cites W3023001533 @default.
- W3092942425 cites W3046287560 @default.
- W3092942425 cites W4212883601 @default.
- W3092942425 cites W4239510810 @default.
- W3092942425 cites W652664929 @default.
- W3092942425 doi "https://doi.org/10.1016/j.ab.2020.113995" @default.
- W3092942425 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33080214" @default.
- W3092942425 hasPublicationYear "2020" @default.
- W3092942425 type Work @default.
- W3092942425 sameAs 3092942425 @default.
- W3092942425 citedByCount "12" @default.
- W3092942425 countsByYear W30929424252021 @default.
- W3092942425 countsByYear W30929424252022 @default.
- W3092942425 countsByYear W30929424252023 @default.
- W3092942425 crossrefType "journal-article" @default.
- W3092942425 hasAuthorship W3092942425A5052771811 @default.
- W3092942425 hasAuthorship W3092942425A5065997024 @default.
- W3092942425 hasConcept C104317684 @default.
- W3092942425 hasConcept C105795698 @default.