Matches in SemOpenAlex for { <https://semopenalex.org/work/W3092959080> ?p ?o ?g. }
- W3092959080 endingPage "128435" @default.
- W3092959080 startingPage "128435" @default.
- W3092959080 abstract "Antibiotics are widespread in the environment with notable ecological risk, for which efficient and green removal technologies are demanded. As a kind of g–C3N4–based material with remarkable photocatalytic property, OCN is an oxygen- and nitrogen-linked carbon nitride organic polymer which can be synthesized through a single-step thermal polymerization method. In this study, OCN was applied for the visible-light-driven photocatalytic degradation of a typical fluoroquinolone (FQ) antibiotics enrofloxacin (ENR). The photocatalysis process achieved over 97% ENR removal within 60 min with 0.4 mg/L OCN and 4 mg/L ENR at pH 8.2. The photocatalytic mechanism of OCN at different pH was studied for the first time. It was shown that O2⋅−, 1O2 and h+ made contributions at neutral or basic pH and 1O2 contributes the most (57.6% at pH 8.2), while ⋅OH played a role only under acidic condition with a contribution rate of 23.8% at pH 3.2. The cleavage of the piperazine ring and the quinolone ring were two main degradation pathways. The common water constituents humic acid and NO3− showed a dual effect, but HCO3− and Cl− inhibited the degradation. The effect of different water matrices was tested under natural sunlight and it was only a tiny disturbance to the degradation rates. The biotoxicity test conducted using Vibrio fischeri indicated that the toxicity of degradation products became negligible after 3 h. This study demonstrated that OCN is a promising candidate for the advanced treatment and in-situ remediation." @default.
- W3092959080 created "2020-10-22" @default.
- W3092959080 creator A5050516908 @default.
- W3092959080 creator A5051480539 @default.
- W3092959080 creator A5061519011 @default.
- W3092959080 creator A5070310940 @default.
- W3092959080 date "2021-06-01" @default.
- W3092959080 modified "2023-10-16" @default.
- W3092959080 title "The degradation of enrofloxacin by a non-metallic heptazine-based OCN polymer: Kinetics, mechanism and effect of water constituents" @default.
- W3092959080 cites W1885794747 @default.
- W3092959080 cites W1973318867 @default.
- W3092959080 cites W1975582079 @default.
- W3092959080 cites W1979824150 @default.
- W3092959080 cites W1984466377 @default.
- W3092959080 cites W1996970649 @default.
- W3092959080 cites W2002833092 @default.
- W3092959080 cites W2005721766 @default.
- W3092959080 cites W2009410551 @default.
- W3092959080 cites W2021068120 @default.
- W3092959080 cites W2022325369 @default.
- W3092959080 cites W2040875144 @default.
- W3092959080 cites W2044343929 @default.
- W3092959080 cites W2046573182 @default.
- W3092959080 cites W2051690696 @default.
- W3092959080 cites W2051802937 @default.
- W3092959080 cites W2055965922 @default.
- W3092959080 cites W2063159607 @default.
- W3092959080 cites W2065178452 @default.
- W3092959080 cites W2069431280 @default.
- W3092959080 cites W2069626422 @default.
- W3092959080 cites W2073132129 @default.
- W3092959080 cites W2073784115 @default.
- W3092959080 cites W2074751309 @default.
- W3092959080 cites W2081951946 @default.
- W3092959080 cites W2084465757 @default.
- W3092959080 cites W2090114550 @default.
- W3092959080 cites W2104105182 @default.
- W3092959080 cites W2108720946 @default.
- W3092959080 cites W2122365530 @default.
- W3092959080 cites W2125583710 @default.
- W3092959080 cites W2142102316 @default.
- W3092959080 cites W2150399639 @default.
- W3092959080 cites W2150684890 @default.
- W3092959080 cites W2188968536 @default.
- W3092959080 cites W2274568786 @default.
- W3092959080 cites W2335114130 @default.
- W3092959080 cites W2419273587 @default.
- W3092959080 cites W2462037391 @default.
- W3092959080 cites W2507657289 @default.
- W3092959080 cites W2518726113 @default.
- W3092959080 cites W2544346464 @default.
- W3092959080 cites W2550284372 @default.
- W3092959080 cites W2553872168 @default.
- W3092959080 cites W2553991050 @default.
- W3092959080 cites W2559865634 @default.
- W3092959080 cites W2584220407 @default.
- W3092959080 cites W2587331059 @default.
- W3092959080 cites W2587681799 @default.
- W3092959080 cites W2621297889 @default.
- W3092959080 cites W2758515308 @default.
- W3092959080 cites W2759553275 @default.
- W3092959080 cites W2766654538 @default.
- W3092959080 cites W2789856719 @default.
- W3092959080 cites W2807861354 @default.
- W3092959080 cites W2864570211 @default.
- W3092959080 cites W2887580396 @default.
- W3092959080 cites W2893224150 @default.
- W3092959080 cites W2895585370 @default.
- W3092959080 cites W2897396242 @default.
- W3092959080 cites W2907330977 @default.
- W3092959080 cites W2911443767 @default.
- W3092959080 cites W2917952344 @default.
- W3092959080 cites W2921024547 @default.
- W3092959080 cites W2922087160 @default.
- W3092959080 cites W2922763877 @default.
- W3092959080 cites W2937780459 @default.
- W3092959080 cites W2944886328 @default.
- W3092959080 cites W2947739902 @default.
- W3092959080 cites W2951378132 @default.
- W3092959080 cites W2954221351 @default.
- W3092959080 cites W2957826796 @default.
- W3092959080 cites W2980664311 @default.
- W3092959080 cites W2981687408 @default.
- W3092959080 cites W2985793387 @default.
- W3092959080 cites W2988738729 @default.
- W3092959080 cites W2993068939 @default.
- W3092959080 cites W2998411778 @default.
- W3092959080 doi "https://doi.org/10.1016/j.chemosphere.2020.128435" @default.
- W3092959080 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33268093" @default.
- W3092959080 hasPublicationYear "2021" @default.
- W3092959080 type Work @default.
- W3092959080 sameAs 3092959080 @default.
- W3092959080 citedByCount "10" @default.
- W3092959080 countsByYear W30929590802021 @default.
- W3092959080 countsByYear W30929590802022 @default.
- W3092959080 countsByYear W30929590802023 @default.
- W3092959080 crossrefType "journal-article" @default.
- W3092959080 hasAuthorship W3092959080A5050516908 @default.