Matches in SemOpenAlex for { <https://semopenalex.org/work/W3093009805> ?p ?o ?g. }
- W3093009805 endingPage "110374" @default.
- W3093009805 startingPage "110374" @default.
- W3093009805 abstract "Rapid nondestructive determination of the moisture content of tea leaves is the basis of intelligent control in tea processing. Visible and near infrared (Vis/NIR) spectroscopy can detect the fundamental vibrations of hydrogen group (O–H) in the organic molecules, and has become one of the most commonly used methods for rapid determination of the moisture content of tea leaves. However, the established spectral model often fails to predict new samples of different varieties or batches, and then it will limit the wide application of this technology. Hence, improvement in the model and removing the impact of these samples variation on the determination model become a key issue for quality control during tea processing. In this study, tea samples of nine batches from three varieties were adopted to verify the performance of model transfer in improving the generalization of spectral models, it is worth noting that the moisture content distribution of different varieties samples is obviously different. It can be found that spectral profile difference of the three batches of tea samples for each variety was effectively eliminated by model transfer. The prediction ability of the PLSR model was improved by correcting the spectra of the tested batches and varieties of tea leaves to solve the problem induced by sample differences. The determination model developed based on the variety of “Longjing” was successfully transferred to the other two varieties of “Wuniuzao” and “Yingshuang”, and the Rp2 were improved from 0.4343 to 0.2066 to 0.7595 and 0.6376, respectively by using DS algorithm comparing with un-transferred models. This study demonstrated that the proposed model transfer strategy by correcting the spectral data could be a robust technique for the rapid detection of the moisture content in different types of tea leaves and lay a basis for industrial application." @default.
- W3093009805 created "2020-10-22" @default.
- W3093009805 creator A5002026477 @default.
- W3093009805 creator A5024505007 @default.
- W3093009805 creator A5033336662 @default.
- W3093009805 creator A5038976335 @default.
- W3093009805 creator A5042988441 @default.
- W3093009805 creator A5054464310 @default.
- W3093009805 creator A5057778151 @default.
- W3093009805 creator A5082366420 @default.
- W3093009805 date "2021-03-01" @default.
- W3093009805 modified "2023-10-17" @default.
- W3093009805 title "Improved generalization of spectral models associated with Vis-NIR spectroscopy for determining the moisture content of different tea leaves" @default.
- W3093009805 cites W1238908634 @default.
- W3093009805 cites W1677706970 @default.
- W3093009805 cites W2017417000 @default.
- W3093009805 cites W2026469743 @default.
- W3093009805 cites W2059234239 @default.
- W3093009805 cites W2062634374 @default.
- W3093009805 cites W2069328240 @default.
- W3093009805 cites W2105090634 @default.
- W3093009805 cites W2167280902 @default.
- W3093009805 cites W2468213734 @default.
- W3093009805 cites W2589220705 @default.
- W3093009805 cites W2592686753 @default.
- W3093009805 cites W2671427956 @default.
- W3093009805 cites W2751060678 @default.
- W3093009805 cites W2764101711 @default.
- W3093009805 cites W2768374290 @default.
- W3093009805 cites W2769865339 @default.
- W3093009805 cites W2775369491 @default.
- W3093009805 cites W2792526012 @default.
- W3093009805 cites W2799365888 @default.
- W3093009805 cites W2801542969 @default.
- W3093009805 cites W2850056764 @default.
- W3093009805 cites W2887896649 @default.
- W3093009805 cites W2896544852 @default.
- W3093009805 cites W2900166959 @default.
- W3093009805 cites W2904424679 @default.
- W3093009805 cites W2905412538 @default.
- W3093009805 cites W2907164533 @default.
- W3093009805 cites W2909516836 @default.
- W3093009805 cites W2917220000 @default.
- W3093009805 cites W2921699705 @default.
- W3093009805 cites W2944239442 @default.
- W3093009805 cites W2963918379 @default.
- W3093009805 cites W2974601526 @default.
- W3093009805 cites W2995200615 @default.
- W3093009805 doi "https://doi.org/10.1016/j.jfoodeng.2020.110374" @default.
- W3093009805 hasPublicationYear "2021" @default.
- W3093009805 type Work @default.
- W3093009805 sameAs 3093009805 @default.
- W3093009805 citedByCount "23" @default.
- W3093009805 countsByYear W30930098052021 @default.
- W3093009805 countsByYear W30930098052022 @default.
- W3093009805 countsByYear W30930098052023 @default.
- W3093009805 crossrefType "journal-article" @default.
- W3093009805 hasAuthorship W3093009805A5002026477 @default.
- W3093009805 hasAuthorship W3093009805A5024505007 @default.
- W3093009805 hasAuthorship W3093009805A5033336662 @default.
- W3093009805 hasAuthorship W3093009805A5038976335 @default.
- W3093009805 hasAuthorship W3093009805A5042988441 @default.
- W3093009805 hasAuthorship W3093009805A5054464310 @default.
- W3093009805 hasAuthorship W3093009805A5057778151 @default.
- W3093009805 hasAuthorship W3093009805A5082366420 @default.
- W3093009805 hasConcept C120665830 @default.
- W3093009805 hasConcept C121332964 @default.
- W3093009805 hasConcept C127413603 @default.
- W3093009805 hasConcept C134306372 @default.
- W3093009805 hasConcept C176864760 @default.
- W3093009805 hasConcept C177148314 @default.
- W3093009805 hasConcept C178790620 @default.
- W3093009805 hasConcept C185592680 @default.
- W3093009805 hasConcept C186060115 @default.
- W3093009805 hasConcept C187320778 @default.
- W3093009805 hasConcept C24939127 @default.
- W3093009805 hasConcept C32891209 @default.
- W3093009805 hasConcept C33923547 @default.
- W3093009805 hasConcept C43571822 @default.
- W3093009805 hasConcept C62520636 @default.
- W3093009805 hasConcept C86803240 @default.
- W3093009805 hasConceptScore W3093009805C120665830 @default.
- W3093009805 hasConceptScore W3093009805C121332964 @default.
- W3093009805 hasConceptScore W3093009805C127413603 @default.
- W3093009805 hasConceptScore W3093009805C134306372 @default.
- W3093009805 hasConceptScore W3093009805C176864760 @default.
- W3093009805 hasConceptScore W3093009805C177148314 @default.
- W3093009805 hasConceptScore W3093009805C178790620 @default.
- W3093009805 hasConceptScore W3093009805C185592680 @default.
- W3093009805 hasConceptScore W3093009805C186060115 @default.
- W3093009805 hasConceptScore W3093009805C187320778 @default.
- W3093009805 hasConceptScore W3093009805C24939127 @default.
- W3093009805 hasConceptScore W3093009805C32891209 @default.
- W3093009805 hasConceptScore W3093009805C33923547 @default.
- W3093009805 hasConceptScore W3093009805C43571822 @default.
- W3093009805 hasConceptScore W3093009805C62520636 @default.
- W3093009805 hasConceptScore W3093009805C86803240 @default.
- W3093009805 hasFunder F4320321001 @default.