Matches in SemOpenAlex for { <https://semopenalex.org/work/W3093013683> ?p ?o ?g. }
- W3093013683 endingPage "124717" @default.
- W3093013683 startingPage "124717" @default.
- W3093013683 abstract "Environmental pollution and low resource utilization efficiency caused by pyrometallurgy have seriously restricted the sustainable development of secondary lead smelting industry. A large number of studies focus on the research of hydrometallurgy to replace pyrometallurgy aiming at pollution prevention. However, due to economic cost, quality of secondary lead product and secondary pollution, hydrometallurgy hasn’t been widely applied by now. At present, most of the researches of pyrometallurgy focus on its environmental pollution assessment, or merely focus on the recovery efficiency of secondary lead. There are fewer researches on the synergic optimization methodology of pollution prevention and resource recovery for secondary lead smelting process. BP neural network is a type of model widely used in industrial processes optimization. While the gradient method adopted by the BP neural network often falls into a local minimum. If the fitting function is too complicated, there may be multiple fitting local minima, which will cause great obstacles to practical applications. Therefore, according to the characteristics of secondary lead smelting process, this paper uses a BP neural network-based nonlinear optimization combined with an approximate global optimization method to obtain the optimal smelting parameters. The innovative feature of this paper is that after the first stage of the neural network preprocessing has formed the fitting of the smelting process, the smelting parameters optimization process is carried out based on the fitted neural network model. According to the characteristics of the entire two-stage process, as well as the corresponding conditional constraints and the smoothing process of the BP neural network output function, we have formed a two-stage BPNLP network model with formally unified constraint by adopting the approximate global optimal search method. Compared with the average level of pollution prevention and lead recovery efficiency of pyrometallurgy technology in China, the pollution load Sulphur, lead, arsenic and cadmium in smelting flue gas per unit secondary lead product has been reduced by 78.40%, 52.00%, 72.63% and 16.00% respectively, and the recovery efficiency of lead increased by 8.85%. Thus, the two-stage BPNLP model can achieve the goal of synergic optimization of pollution prevention and resource recovery of pyrometallurgy technology of secondary lead smelting industry which can also provide effective methodological guidance for the related research of other industries." @default.
- W3093013683 created "2020-10-22" @default.
- W3093013683 creator A5006651636 @default.
- W3093013683 creator A5038806981 @default.
- W3093013683 creator A5042772858 @default.
- W3093013683 creator A5061883388 @default.
- W3093013683 creator A5066506578 @default.
- W3093013683 creator A5081338225 @default.
- W3093013683 creator A5081768084 @default.
- W3093013683 date "2021-02-01" @default.
- W3093013683 modified "2023-10-07" @default.
- W3093013683 title "Synergic optimization of pollution prevention and resource recovery of secondary lead smelting industry based on two-stage BPNLP network model" @default.
- W3093013683 cites W1969404656 @default.
- W3093013683 cites W1994406307 @default.
- W3093013683 cites W2003169305 @default.
- W3093013683 cites W2013715230 @default.
- W3093013683 cites W2018510639 @default.
- W3093013683 cites W2019652008 @default.
- W3093013683 cites W2021741547 @default.
- W3093013683 cites W2026080067 @default.
- W3093013683 cites W2054556082 @default.
- W3093013683 cites W2086225703 @default.
- W3093013683 cites W2087465351 @default.
- W3093013683 cites W2088287435 @default.
- W3093013683 cites W2091602214 @default.
- W3093013683 cites W2110862843 @default.
- W3093013683 cites W2123916635 @default.
- W3093013683 cites W2141122045 @default.
- W3093013683 cites W2201643924 @default.
- W3093013683 cites W2293104209 @default.
- W3093013683 cites W2325605008 @default.
- W3093013683 cites W2414656218 @default.
- W3093013683 cites W2529865501 @default.
- W3093013683 cites W2567778769 @default.
- W3093013683 cites W2574421942 @default.
- W3093013683 cites W2588162845 @default.
- W3093013683 cites W2593053898 @default.
- W3093013683 cites W2595063908 @default.
- W3093013683 cites W2756361521 @default.
- W3093013683 cites W2780310739 @default.
- W3093013683 cites W2799654806 @default.
- W3093013683 cites W2803163155 @default.
- W3093013683 cites W2890865264 @default.
- W3093013683 cites W2900685129 @default.
- W3093013683 cites W2908452899 @default.
- W3093013683 cites W2914018067 @default.
- W3093013683 cites W2929210727 @default.
- W3093013683 cites W3049449316 @default.
- W3093013683 doi "https://doi.org/10.1016/j.jclepro.2020.124717" @default.
- W3093013683 hasPublicationYear "2021" @default.
- W3093013683 type Work @default.
- W3093013683 sameAs 3093013683 @default.
- W3093013683 citedByCount "7" @default.
- W3093013683 countsByYear W30930136832022 @default.
- W3093013683 countsByYear W30930136832023 @default.
- W3093013683 crossrefType "journal-article" @default.
- W3093013683 hasAuthorship W3093013683A5006651636 @default.
- W3093013683 hasAuthorship W3093013683A5038806981 @default.
- W3093013683 hasAuthorship W3093013683A5042772858 @default.
- W3093013683 hasAuthorship W3093013683A5061883388 @default.
- W3093013683 hasAuthorship W3093013683A5066506578 @default.
- W3093013683 hasAuthorship W3093013683A5081338225 @default.
- W3093013683 hasAuthorship W3093013683A5081768084 @default.
- W3093013683 hasConcept C111919701 @default.
- W3093013683 hasConcept C127413603 @default.
- W3093013683 hasConcept C152977038 @default.
- W3093013683 hasConcept C154945302 @default.
- W3093013683 hasConcept C157247726 @default.
- W3093013683 hasConcept C178790620 @default.
- W3093013683 hasConcept C185592680 @default.
- W3093013683 hasConcept C18903297 @default.
- W3093013683 hasConcept C206345919 @default.
- W3093013683 hasConcept C21880701 @default.
- W3093013683 hasConcept C22947924 @default.
- W3093013683 hasConcept C2778258037 @default.
- W3093013683 hasConcept C2909468537 @default.
- W3093013683 hasConcept C31258907 @default.
- W3093013683 hasConcept C39432304 @default.
- W3093013683 hasConcept C41008148 @default.
- W3093013683 hasConcept C50644808 @default.
- W3093013683 hasConcept C521259446 @default.
- W3093013683 hasConcept C526734887 @default.
- W3093013683 hasConcept C548081761 @default.
- W3093013683 hasConcept C76231477 @default.
- W3093013683 hasConcept C86803240 @default.
- W3093013683 hasConcept C98045186 @default.
- W3093013683 hasConceptScore W3093013683C111919701 @default.
- W3093013683 hasConceptScore W3093013683C127413603 @default.
- W3093013683 hasConceptScore W3093013683C152977038 @default.
- W3093013683 hasConceptScore W3093013683C154945302 @default.
- W3093013683 hasConceptScore W3093013683C157247726 @default.
- W3093013683 hasConceptScore W3093013683C178790620 @default.
- W3093013683 hasConceptScore W3093013683C185592680 @default.
- W3093013683 hasConceptScore W3093013683C18903297 @default.
- W3093013683 hasConceptScore W3093013683C206345919 @default.
- W3093013683 hasConceptScore W3093013683C21880701 @default.
- W3093013683 hasConceptScore W3093013683C22947924 @default.
- W3093013683 hasConceptScore W3093013683C2778258037 @default.