Matches in SemOpenAlex for { <https://semopenalex.org/work/W3093016922> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W3093016922 abstract "In this paper we prove that points in the space $X(k,n)$ of configurations of $n$ points in $mathbb{CP}^{k-1}$ which are fixed under a certain cyclic action are the solutions to the generalized scattering equations on planar kinematics (PK). In the first part, we give a constructive upper bound: we show that these solutions inject into certain aperiodic k-element subsets of ${1,ldots, n}$, and consequently that their number is bounded above by the number of Lyndon words with k one's and n-k zeros. The proof uses a somewhat surprising connection between the superpotential of the mirror of $G(n-k,n)$ and the generalized CHY potential on $X(k,n)$. We also check the recent conjecture that generalized biadjoint amplitudes evaluate to $k$-dimensional Catalan numbers on PK for several examples including $k=3$ and $nleq 40$ and $(k,n)=(6,13)$. We then reformulate the CEGM generalized biadjoint scalar amplitude directly as a Laplace transform-type integral over ${rm Trop}^+ G(k,n)$ and we use it to evaluate the amplitude on PK with the purpose of exhibiting how GFD's glue together. We initiate the study of two minimal lattice polytopal neighborhoods of the planar kinematics point. One of these, the rank-graded root polytope $mathcal{R}_{k,n}$, in the case $k=2$, is a projection of the standard type A root polytope. The other, denoted $Pi_{k,n}$, in the case $k=2$, is a degeneration of the associahedron. We check up to and including $mathcal{R}_{3,9}$ and $mathcal{R}_{4,9}$ that the relative volume of $mathcal{R}_{k,n}$ is the multi-dimensional Catalan number $C^{(k)}_{n-k}$, hinting towards the possibility of deeper geometric and combinatorial interpretations of $m^{(k)}(mathbb{I}_n,mathbb{I}_n)$ near the PK point." @default.
- W3093016922 created "2020-10-22" @default.
- W3093016922 creator A5002685783 @default.
- W3093016922 creator A5027266484 @default.
- W3093016922 date "2020-10-19" @default.
- W3093016922 modified "2023-09-27" @default.
- W3093016922 title "Planar Kinematics: Cyclic Fixed Points, Mirror Superpotential, k-Dimensional Catalan Numbers, and Root Polytopes" @default.
- W3093016922 cites W114528659 @default.
- W3093016922 cites W1988596207 @default.
- W3093016922 cites W1993092296 @default.
- W3093016922 cites W2003064123 @default.
- W3093016922 cites W2009630970 @default.
- W3093016922 cites W2063068526 @default.
- W3093016922 cites W2079988604 @default.
- W3093016922 cites W2115369098 @default.
- W3093016922 cites W2962932384 @default.
- W3093016922 cites W3009825891 @default.
- W3093016922 cites W3012876652 @default.
- W3093016922 cites W3029036708 @default.
- W3093016922 cites W3099767822 @default.
- W3093016922 cites W3101013749 @default.
- W3093016922 cites W3104336325 @default.
- W3093016922 hasPublicationYear "2020" @default.
- W3093016922 type Work @default.
- W3093016922 sameAs 3093016922 @default.
- W3093016922 citedByCount "2" @default.
- W3093016922 countsByYear W30930169222021 @default.
- W3093016922 countsByYear W30930169222023 @default.
- W3093016922 crossrefType "posted-content" @default.
- W3093016922 hasAuthorship W3093016922A5002685783 @default.
- W3093016922 hasAuthorship W3093016922A5027266484 @default.
- W3093016922 hasConcept C114614502 @default.
- W3093016922 hasConcept C134306372 @default.
- W3093016922 hasConcept C145691206 @default.
- W3093016922 hasConcept C33923547 @default.
- W3093016922 hasConcept C34388435 @default.
- W3093016922 hasConcept C43929256 @default.
- W3093016922 hasConceptScore W3093016922C114614502 @default.
- W3093016922 hasConceptScore W3093016922C134306372 @default.
- W3093016922 hasConceptScore W3093016922C145691206 @default.
- W3093016922 hasConceptScore W3093016922C33923547 @default.
- W3093016922 hasConceptScore W3093016922C34388435 @default.
- W3093016922 hasConceptScore W3093016922C43929256 @default.
- W3093016922 hasLocation W30930169221 @default.
- W3093016922 hasOpenAccess W3093016922 @default.
- W3093016922 hasPrimaryLocation W30930169221 @default.
- W3093016922 hasRelatedWork W1630416809 @default.
- W3093016922 hasRelatedWork W1855671081 @default.
- W3093016922 hasRelatedWork W1975924433 @default.
- W3093016922 hasRelatedWork W2063249517 @default.
- W3093016922 hasRelatedWork W2155738295 @default.
- W3093016922 hasRelatedWork W2182925713 @default.
- W3093016922 hasRelatedWork W2261481636 @default.
- W3093016922 hasRelatedWork W2516960493 @default.
- W3093016922 hasRelatedWork W2554862085 @default.
- W3093016922 hasRelatedWork W2612643346 @default.
- W3093016922 hasRelatedWork W2787979774 @default.
- W3093016922 hasRelatedWork W2883105261 @default.
- W3093016922 hasRelatedWork W2892347424 @default.
- W3093016922 hasRelatedWork W2924331794 @default.
- W3093016922 hasRelatedWork W2988661155 @default.
- W3093016922 hasRelatedWork W2990677522 @default.
- W3093016922 hasRelatedWork W3101013749 @default.
- W3093016922 hasRelatedWork W3104493577 @default.
- W3093016922 hasRelatedWork W3117099148 @default.
- W3093016922 hasRelatedWork W3148398391 @default.
- W3093016922 isParatext "false" @default.
- W3093016922 isRetracted "false" @default.
- W3093016922 magId "3093016922" @default.
- W3093016922 workType "article" @default.