Matches in SemOpenAlex for { <https://semopenalex.org/work/W3093043896> ?p ?o ?g. }
- W3093043896 endingPage "173" @default.
- W3093043896 startingPage "159" @default.
- W3093043896 abstract "Multimodal sentiment analysis is one of the most attractive interdisciplinary research topics in artificial intelligence (AI). Different from other classification issues, multimodal sentiment analysis of human is a much finer classification problem. However, most current work accept all multimodalities as the input together and then output final results at one time after fusion and decision processes. Rare models try to divide their models into more than one fusion modules with different fusion strategies for better adaption of different tasks. Additionally, most recent multimodal sentiment analysis methods pay great focuses on binary classification, but the accuracy of multi-classification still remains difficult to improve. Inspired by the emotional processing procedure in cognitive science, both binary and multi-classification abilities are improved in our method by dividing the complicated problem into smaller issues which are easier to be handled. In this paper, we propose a Hierarchal Attention-BiLSTM (Bidirectional Long-Short Term Memory) model based on Cognitive Brain limbic system (HALCB). HALCB splits the multimodal sentiment analysis into two modules responsible for two tasks, the binary classification and the multi-classification. The former module divides the input items into two categories by recognizing their polarity and then sends them to the latter module separately. In this module, Hash algorithm is utilized to improve the retrieve accuracy and speed. Correspondingly, the latter module contains a positive sub-net dedicated for positive inputs and a negative sub-nets dedicated for negative inputs. Each of these binary module and two sub-nets in multi-classification module possesses different fusion strategy and decision layer for matching its respective function. We also add a random forest at the final link to collect outputs from all modules and fuse them at the decision-level at last. Experiments are conducted on three datasets and compare the results with baselines on both binary classification and multi-classification tasks. Our experimental results surpass the state-of-the-art multimodal sentiment analysis methods on both binary and multi-classification by a big margin." @default.
- W3093043896 created "2020-10-22" @default.
- W3093043896 creator A5030064573 @default.
- W3093043896 creator A5035633072 @default.
- W3093043896 creator A5056569344 @default.
- W3093043896 creator A5071363803 @default.
- W3093043896 date "2021-03-01" @default.
- W3093043896 modified "2023-10-14" @default.
- W3093043896 title "A cognitive brain model for multimodal sentiment analysis based on attention neural networks" @default.
- W3093043896 cites W1133916940 @default.
- W3093043896 cites W2003238582 @default.
- W3093043896 cites W2056467727 @default.
- W3093043896 cites W2095176743 @default.
- W3093043896 cites W2122563357 @default.
- W3093043896 cites W2350610975 @default.
- W3093043896 cites W2584561145 @default.
- W3093043896 cites W2614874155 @default.
- W3093043896 cites W2728321415 @default.
- W3093043896 cites W2733636222 @default.
- W3093043896 cites W2737990573 @default.
- W3093043896 cites W2740550900 @default.
- W3093043896 cites W2753840835 @default.
- W3093043896 cites W2758424050 @default.
- W3093043896 cites W2761187698 @default.
- W3093043896 cites W2762093149 @default.
- W3093043896 cites W2766671363 @default.
- W3093043896 cites W2772633765 @default.
- W3093043896 cites W2787581402 @default.
- W3093043896 cites W2792311129 @default.
- W3093043896 cites W2792763200 @default.
- W3093043896 cites W2796430037 @default.
- W3093043896 cites W2798834175 @default.
- W3093043896 cites W2799331981 @default.
- W3093043896 cites W2799498328 @default.
- W3093043896 cites W2800709752 @default.
- W3093043896 cites W2805121932 @default.
- W3093043896 cites W2883409523 @default.
- W3093043896 cites W2887510128 @default.
- W3093043896 cites W2888650348 @default.
- W3093043896 cites W2895547478 @default.
- W3093043896 cites W2904893967 @default.
- W3093043896 cites W2914626776 @default.
- W3093043896 cites W2941770316 @default.
- W3093043896 cites W2944622326 @default.
- W3093043896 cites W2947081911 @default.
- W3093043896 cites W2949029099 @default.
- W3093043896 cites W2962809314 @default.
- W3093043896 cites W2963702064 @default.
- W3093043896 cites W2963710346 @default.
- W3093043896 cites W2966248858 @default.
- W3093043896 cites W2966269089 @default.
- W3093043896 cites W2969078176 @default.
- W3093043896 cites W2970250895 @default.
- W3093043896 cites W2970405962 @default.
- W3093043896 cites W2971949219 @default.
- W3093043896 cites W2972789371 @default.
- W3093043896 cites W2973110385 @default.
- W3093043896 cites W2980718707 @default.
- W3093043896 cites W2981026438 @default.
- W3093043896 cites W2981868774 @default.
- W3093043896 cites W2982281530 @default.
- W3093043896 cites W2989684529 @default.
- W3093043896 cites W2995071747 @default.
- W3093043896 cites W3016482947 @default.
- W3093043896 cites W3102444842 @default.
- W3093043896 doi "https://doi.org/10.1016/j.neucom.2020.10.021" @default.
- W3093043896 hasPublicationYear "2021" @default.
- W3093043896 type Work @default.
- W3093043896 sameAs 3093043896 @default.
- W3093043896 citedByCount "13" @default.
- W3093043896 countsByYear W30930438962020 @default.
- W3093043896 countsByYear W30930438962021 @default.
- W3093043896 countsByYear W30930438962022 @default.
- W3093043896 countsByYear W30930438962023 @default.
- W3093043896 crossrefType "journal-article" @default.
- W3093043896 hasAuthorship W3093043896A5030064573 @default.
- W3093043896 hasAuthorship W3093043896A5035633072 @default.
- W3093043896 hasAuthorship W3093043896A5056569344 @default.
- W3093043896 hasAuthorship W3093043896A5071363803 @default.
- W3093043896 hasConcept C119857082 @default.
- W3093043896 hasConcept C12267149 @default.
- W3093043896 hasConcept C153180895 @default.
- W3093043896 hasConcept C154945302 @default.
- W3093043896 hasConcept C169760540 @default.
- W3093043896 hasConcept C169900460 @default.
- W3093043896 hasConcept C33923547 @default.
- W3093043896 hasConcept C41008148 @default.
- W3093043896 hasConcept C48372109 @default.
- W3093043896 hasConcept C50644808 @default.
- W3093043896 hasConcept C66402592 @default.
- W3093043896 hasConcept C66905080 @default.
- W3093043896 hasConcept C86803240 @default.
- W3093043896 hasConcept C94375191 @default.
- W3093043896 hasConceptScore W3093043896C119857082 @default.
- W3093043896 hasConceptScore W3093043896C12267149 @default.
- W3093043896 hasConceptScore W3093043896C153180895 @default.
- W3093043896 hasConceptScore W3093043896C154945302 @default.
- W3093043896 hasConceptScore W3093043896C169760540 @default.