Matches in SemOpenAlex for { <https://semopenalex.org/work/W3093127984> ?p ?o ?g. }
- W3093127984 abstract "In this study, we employ physics-informed neural networks (PINNs) to solve forward and inverse problems via the Boltzmann-BGK formulation (PINN-BGK), enabling PINNs to model flows in both the continuum and rarefied regimes. In particular, the PINN-BGK is composed of three sub-networks, i.e., the first for approximating the equilibrium distribution function, the second for approximating the non-equilibrium distribution function, and the third one for encoding the Boltzmann-BGK equation as well as the corresponding boundary/initial conditions. By minimizing the residuals of the governing equations and the mismatch between the predicted and provided boundary/initial conditions, we can approximate the Boltzmann-BGK equation for both continuous and rarefied flows. For forward problems, the PINN-BGK is utilized to solve various benchmark flows given boundary/initial conditions, e.g., Kovasznay flow, Taylor-Green flow, cavity flow, and micro Couette flow for Knudsen number up to 5. For inverse problems, we focus on rarefied flows in which accurate boundary conditions are difficult to obtain. We employ the PINN-BGK to infer the flow field in the entire computational domain given a limited number of interior scattered measurements on the velocity with unknown boundary conditions. Results for the two-dimensional micro Couette and micro cavity flows with Knudsen numbers ranging from 0.1 to 10 indicate that the PINN-BGK can infer the velocity field in the entire domain with good accuracy. Finally, we also present some results on using transfer learning to accelerate the training process. Specifically, we can obtain a three-fold speedup compared to the standard training process (e.g., Adam plus L-BFGS-B) for the two-dimensional flow problems considered in our work." @default.
- W3093127984 created "2020-10-22" @default.
- W3093127984 creator A5009658255 @default.
- W3093127984 creator A5025814758 @default.
- W3093127984 creator A5084186853 @default.
- W3093127984 date "2020-10-19" @default.
- W3093127984 modified "2023-09-28" @default.
- W3093127984 title "Physics-informed neural networks for solving forward and inverse flow problems via the Boltzmann-BGK formulation." @default.
- W3093127984 cites W1480930808 @default.
- W3093127984 cites W1555752350 @default.
- W3093127984 cites W1837372616 @default.
- W3093127984 cites W1969064103 @default.
- W3093127984 cites W1970454553 @default.
- W3093127984 cites W1978273007 @default.
- W3093127984 cites W1986614398 @default.
- W3093127984 cites W1988344382 @default.
- W3093127984 cites W1990296993 @default.
- W3093127984 cites W1992946551 @default.
- W3093127984 cites W2010808350 @default.
- W3093127984 cites W2017700359 @default.
- W3093127984 cites W2025200637 @default.
- W3093127984 cites W2042624429 @default.
- W3093127984 cites W2045113214 @default.
- W3093127984 cites W2049716918 @default.
- W3093127984 cites W2053411296 @default.
- W3093127984 cites W2061196363 @default.
- W3093127984 cites W2061374290 @default.
- W3093127984 cites W2066060292 @default.
- W3093127984 cites W2079631834 @default.
- W3093127984 cites W2086026333 @default.
- W3093127984 cites W2108973612 @default.
- W3093127984 cites W2120900954 @default.
- W3093127984 cites W2126642381 @default.
- W3093127984 cites W2142708530 @default.
- W3093127984 cites W2154340621 @default.
- W3093127984 cites W2164811066 @default.
- W3093127984 cites W2335242657 @default.
- W3093127984 cites W2395787872 @default.
- W3093127984 cites W2411948770 @default.
- W3093127984 cites W2503928598 @default.
- W3093127984 cites W2607320673 @default.
- W3093127984 cites W2607623373 @default.
- W3093127984 cites W2728355076 @default.
- W3093127984 cites W2749028154 @default.
- W3093127984 cites W2765444693 @default.
- W3093127984 cites W2800993982 @default.
- W3093127984 cites W2899283552 @default.
- W3093127984 cites W2912381759 @default.
- W3093127984 cites W2919958648 @default.
- W3093127984 cites W2954442294 @default.
- W3093127984 cites W2955547388 @default.
- W3093127984 cites W2958706811 @default.
- W3093127984 cites W2963323402 @default.
- W3093127984 cites W2963696744 @default.
- W3093127984 cites W2980396542 @default.
- W3093127984 cites W2995080125 @default.
- W3093127984 cites W2998366519 @default.
- W3093127984 cites W2999069243 @default.
- W3093127984 cites W3003922491 @default.
- W3093127984 cites W3010839048 @default.
- W3093127984 cites W3014009018 @default.
- W3093127984 cites W3027960332 @default.
- W3093127984 cites W3041682155 @default.
- W3093127984 cites W3048837412 @default.
- W3093127984 cites W324280150 @default.
- W3093127984 cites W2080678700 @default.
- W3093127984 cites W2931102813 @default.
- W3093127984 hasPublicationYear "2020" @default.
- W3093127984 type Work @default.
- W3093127984 sameAs 3093127984 @default.
- W3093127984 citedByCount "4" @default.
- W3093127984 countsByYear W30931279842021 @default.
- W3093127984 crossrefType "posted-content" @default.
- W3093127984 hasAuthorship W3093127984A5009658255 @default.
- W3093127984 hasAuthorship W3093127984A5025814758 @default.
- W3093127984 hasAuthorship W3093127984A5084186853 @default.
- W3093127984 hasConcept C121332964 @default.
- W3093127984 hasConcept C121838276 @default.
- W3093127984 hasConcept C121864883 @default.
- W3093127984 hasConcept C134306372 @default.
- W3093127984 hasConcept C135252773 @default.
- W3093127984 hasConcept C165995430 @default.
- W3093127984 hasConcept C182310444 @default.
- W3093127984 hasConcept C186603090 @default.
- W3093127984 hasConcept C207467116 @default.
- W3093127984 hasConcept C2524010 @default.
- W3093127984 hasConcept C2779099160 @default.
- W3093127984 hasConcept C28826006 @default.
- W3093127984 hasConcept C33923547 @default.
- W3093127984 hasConcept C35304006 @default.
- W3093127984 hasConcept C38349280 @default.
- W3093127984 hasConcept C57879066 @default.
- W3093127984 hasConcept C62354387 @default.
- W3093127984 hasConcept C62520636 @default.
- W3093127984 hasConcept C74650414 @default.
- W3093127984 hasConceptScore W3093127984C121332964 @default.
- W3093127984 hasConceptScore W3093127984C121838276 @default.
- W3093127984 hasConceptScore W3093127984C121864883 @default.
- W3093127984 hasConceptScore W3093127984C134306372 @default.
- W3093127984 hasConceptScore W3093127984C135252773 @default.