Matches in SemOpenAlex for { <https://semopenalex.org/work/W3093255748> ?p ?o ?g. }
- W3093255748 endingPage "108048" @default.
- W3093255748 startingPage "108048" @default.
- W3093255748 abstract "Afforestation results in a wide range of soil resources with carbon (C), nitrogen (N), and phosphorus (P) levels that rarely meet microbial elemental demands. Such stoichiometric imbalances result in the limitation of microbial activity by nutrients, and have consequences for microbial C and nutrient use efficiency and ultimately the fate of soil C. However, how microorganisms cope with stoichiometric imbalances following afforestation and how their responses regulate microbial-driven C emissions remain unclear. We compared sites along a 42 year Robinia pseudoacacia afforestation chronosequence on the Loess Plateau of China, to quantify soil microbial nutrient limitation and explore the mechanisms underlying microbe-mediated C dynamics under conditions of stoichiometric imbalance. Soil available nutrients, potential activities of C-, N-, and P-acquiring enzymes, microbial biomass, microbial community composition and diversity, as well as microbial respiration were measured. Results showed that stoichiometric imbalances increased soil enzymatic activities targeting the mobilization of limiting nutrients at different afforestation stages. Specifically, soil microbial communities were limited by C in farmland, co-limited by N and P at the 10-year site, and became more limited by P as stand age increased. Reductions in stoichiometric imbalance along the afforestation chronosequence corresponded to an increased microbial alpha diversity and fungi-to-bacteria ratio. Stoichiometric imbalances were more strongly associated with changes in soil bacterial beta diversity than fungal beta diversity. Bacterial communities transitioned from being oligotrophic (Actinobacteria dominant) to copiotrophic (Proteobacteria dominant) during forest development, and this was significantly related to stoichiometric imbalance. However, no significant correlation was detected between stoichiometric imbalance and the dominant fungal phyla (i.e., Ascomycota, Basidiomycota, and Zygomycota). The synergistic responses of enzymatic stoichiometry and microbial community properties to stoichiometric imbalance following afforestation led to reduced microbial threshold elemental ratios, which elevated microbial C use efficiency and increased biomass turnover time, further suppressing microbial respiration. Such collaborative-adaptations imply that more C will be diverted into microbial biomass rather than losing, thus could be favorable to soil C storage. Collectively, these findings highlight the importance of stoichiometric imbalances in regulating microbial-driven C emissions and contribute to an improved understanding of how substrate quality changes induced by revegetation influences terrestrial C flows in ecologically fragile areas." @default.
- W3093255748 created "2020-10-22" @default.
- W3093255748 creator A5008479914 @default.
- W3093255748 creator A5026517345 @default.
- W3093255748 creator A5042282426 @default.
- W3093255748 creator A5043749183 @default.
- W3093255748 creator A5044765535 @default.
- W3093255748 creator A5045307168 @default.
- W3093255748 creator A5056630426 @default.
- W3093255748 creator A5086118953 @default.
- W3093255748 creator A5088884866 @default.
- W3093255748 date "2020-12-01" @default.
- W3093255748 modified "2023-10-18" @default.
- W3093255748 title "Adaptive pathways of soil microorganisms to stoichiometric imbalances regulate microbial respiration following afforestation in the Loess Plateau, China" @default.
- W3093255748 cites W1685833191 @default.
- W3093255748 cites W1966964429 @default.
- W3093255748 cites W1976189213 @default.
- W3093255748 cites W1985343940 @default.
- W3093255748 cites W1998827044 @default.
- W3093255748 cites W1999605210 @default.
- W3093255748 cites W2004256739 @default.
- W3093255748 cites W2025175253 @default.
- W3093255748 cites W2081776673 @default.
- W3093255748 cites W2092968444 @default.
- W3093255748 cites W2095763963 @default.
- W3093255748 cites W2115015814 @default.
- W3093255748 cites W2123685920 @default.
- W3093255748 cites W2125658376 @default.
- W3093255748 cites W2137250535 @default.
- W3093255748 cites W2141511093 @default.
- W3093255748 cites W2144138018 @default.
- W3093255748 cites W2149554986 @default.
- W3093255748 cites W2152405429 @default.
- W3093255748 cites W2154284594 @default.
- W3093255748 cites W2157994386 @default.
- W3093255748 cites W2162052097 @default.
- W3093255748 cites W2269882445 @default.
- W3093255748 cites W2311493409 @default.
- W3093255748 cites W2404460749 @default.
- W3093255748 cites W2417540756 @default.
- W3093255748 cites W2515147922 @default.
- W3093255748 cites W2518293916 @default.
- W3093255748 cites W2560772778 @default.
- W3093255748 cites W2567212266 @default.
- W3093255748 cites W2571626469 @default.
- W3093255748 cites W2593229916 @default.
- W3093255748 cites W2773562060 @default.
- W3093255748 cites W2782051704 @default.
- W3093255748 cites W2887948194 @default.
- W3093255748 cites W2896080895 @default.
- W3093255748 cites W2910689128 @default.
- W3093255748 cites W2920232831 @default.
- W3093255748 cites W2959214299 @default.
- W3093255748 cites W2965483714 @default.
- W3093255748 cites W2971349858 @default.
- W3093255748 cites W2979476166 @default.
- W3093255748 cites W2999505640 @default.
- W3093255748 cites W2999955573 @default.
- W3093255748 cites W3147128100 @default.
- W3093255748 doi "https://doi.org/10.1016/j.soilbio.2020.108048" @default.
- W3093255748 hasPublicationYear "2020" @default.
- W3093255748 type Work @default.
- W3093255748 sameAs 3093255748 @default.
- W3093255748 citedByCount "54" @default.
- W3093255748 countsByYear W30932557482021 @default.
- W3093255748 countsByYear W30932557482022 @default.
- W3093255748 countsByYear W30932557482023 @default.
- W3093255748 crossrefType "journal-article" @default.
- W3093255748 hasAuthorship W3093255748A5008479914 @default.
- W3093255748 hasAuthorship W3093255748A5026517345 @default.
- W3093255748 hasAuthorship W3093255748A5042282426 @default.
- W3093255748 hasAuthorship W3093255748A5043749183 @default.
- W3093255748 hasAuthorship W3093255748A5044765535 @default.
- W3093255748 hasAuthorship W3093255748A5045307168 @default.
- W3093255748 hasAuthorship W3093255748A5056630426 @default.
- W3093255748 hasAuthorship W3093255748A5086118953 @default.
- W3093255748 hasAuthorship W3093255748A5088884866 @default.
- W3093255748 hasConcept C107872376 @default.
- W3093255748 hasConcept C110872660 @default.
- W3093255748 hasConcept C142796444 @default.
- W3093255748 hasConcept C175605896 @default.
- W3093255748 hasConcept C185592680 @default.
- W3093255748 hasConcept C18903297 @default.
- W3093255748 hasConcept C2778169975 @default.
- W3093255748 hasConcept C2778609550 @default.
- W3093255748 hasConcept C2778948613 @default.
- W3093255748 hasConcept C2779210973 @default.
- W3093255748 hasConcept C39432304 @default.
- W3093255748 hasConcept C42062724 @default.
- W3093255748 hasConcept C523546767 @default.
- W3093255748 hasConcept C54355233 @default.
- W3093255748 hasConcept C56095865 @default.
- W3093255748 hasConcept C6557445 @default.
- W3093255748 hasConcept C73447217 @default.
- W3093255748 hasConcept C81407943 @default.
- W3093255748 hasConcept C86803240 @default.
- W3093255748 hasConceptScore W3093255748C107872376 @default.
- W3093255748 hasConceptScore W3093255748C110872660 @default.