Matches in SemOpenAlex for { <https://semopenalex.org/work/W3093354791> ?p ?o ?g. }
- W3093354791 endingPage "104755" @default.
- W3093354791 startingPage "104755" @default.
- W3093354791 abstract "Childhood sexual abuse (CSA) is a worldwide phenomenon that has negative long-term consequences for the victims and their families, and inflicts a considerable economic toll on society. One of the main difficulties in treating CSA is victims' reluctance to disclose their abuse, and the failure of professionals to detect it when there is no forensic evidence (Bottoms et al., 2014; McElvaney, 2013). Estimated disclosure rates for child sexual abuse based on retrospective adult reports range from 23 % to 45 % (e.g., Bottoms et al., 2014). This study reports the four stages in the development of a Convolutional Neural Network (CNN) system designed to detect abuse in self-figure drawings: (1) A preliminary study to build a Gender CNN; (2) Expert-level performance evaluation, (3) validation of the CSA CNN, (4) testing of the CSA CNN model. The findings indicate that the Gender CNN achieved 88 % detection accuracy and outperformed the CSA CNN by 19 percentage points. The CSA CNN achieved 72 % accuracy on the test set with 80 % precision and 79 % recall for the abuse class prediction. However, human experts outperformed the CSA CNN by 16 percentage points, probably due to the complexity of the task. These preliminary results suggest that CNN, when further developed, can contribute to the detection of child sexual abuse." @default.
- W3093354791 created "2020-10-22" @default.
- W3093354791 creator A5007815271 @default.
- W3093354791 creator A5011001774 @default.
- W3093354791 creator A5043737491 @default.
- W3093354791 creator A5055515730 @default.
- W3093354791 creator A5065221996 @default.
- W3093354791 date "2020-11-01" @default.
- W3093354791 modified "2023-10-18" @default.
- W3093354791 title "Can artificial intelligence achieve human-level performance? A pilot study of childhood sexual abuse detection in self-figure drawings" @default.
- W3093354791 cites W1724392955 @default.
- W3093354791 cites W1730214326 @default.
- W3093354791 cites W1768699991 @default.
- W3093354791 cites W1821868230 @default.
- W3093354791 cites W1966451396 @default.
- W3093354791 cites W1973650028 @default.
- W3093354791 cites W1980381799 @default.
- W3093354791 cites W1992817986 @default.
- W3093354791 cites W1998494979 @default.
- W3093354791 cites W2014825527 @default.
- W3093354791 cites W2015038578 @default.
- W3093354791 cites W2016702884 @default.
- W3093354791 cites W2018371981 @default.
- W3093354791 cites W2019818855 @default.
- W3093354791 cites W2022960521 @default.
- W3093354791 cites W2031759458 @default.
- W3093354791 cites W2034724349 @default.
- W3093354791 cites W2037733659 @default.
- W3093354791 cites W2039142961 @default.
- W3093354791 cites W2061593501 @default.
- W3093354791 cites W2062589197 @default.
- W3093354791 cites W2063729978 @default.
- W3093354791 cites W2073578705 @default.
- W3093354791 cites W2073698953 @default.
- W3093354791 cites W2075472373 @default.
- W3093354791 cites W2082055901 @default.
- W3093354791 cites W2085871366 @default.
- W3093354791 cites W2088667926 @default.
- W3093354791 cites W2090211014 @default.
- W3093354791 cites W2097557000 @default.
- W3093354791 cites W2101559505 @default.
- W3093354791 cites W2109318415 @default.
- W3093354791 cites W2109353555 @default.
- W3093354791 cites W2113245228 @default.
- W3093354791 cites W2130596677 @default.
- W3093354791 cites W2141125852 @default.
- W3093354791 cites W2152536317 @default.
- W3093354791 cites W2169361078 @default.
- W3093354791 cites W2206300070 @default.
- W3093354791 cites W2222638508 @default.
- W3093354791 cites W2294775999 @default.
- W3093354791 cites W2303037199 @default.
- W3093354791 cites W2326468304 @default.
- W3093354791 cites W2346501081 @default.
- W3093354791 cites W2396912865 @default.
- W3093354791 cites W2576404523 @default.
- W3093354791 cites W2580678983 @default.
- W3093354791 cites W2588982583 @default.
- W3093354791 cites W2596601118 @default.
- W3093354791 cites W2613076705 @default.
- W3093354791 cites W2618530766 @default.
- W3093354791 cites W2725693320 @default.
- W3093354791 cites W2795769299 @default.
- W3093354791 cites W2797694788 @default.
- W3093354791 cites W2886722265 @default.
- W3093354791 cites W2898865191 @default.
- W3093354791 cites W2904571830 @default.
- W3093354791 cites W2905441841 @default.
- W3093354791 cites W2907025024 @default.
- W3093354791 cites W2941980359 @default.
- W3093354791 doi "https://doi.org/10.1016/j.chiabu.2020.104755" @default.
- W3093354791 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33075702" @default.
- W3093354791 hasPublicationYear "2020" @default.
- W3093354791 type Work @default.
- W3093354791 sameAs 3093354791 @default.
- W3093354791 citedByCount "15" @default.
- W3093354791 countsByYear W30933547912021 @default.
- W3093354791 countsByYear W30933547912022 @default.
- W3093354791 countsByYear W30933547912023 @default.
- W3093354791 crossrefType "journal-article" @default.
- W3093354791 hasAuthorship W3093354791A5007815271 @default.
- W3093354791 hasAuthorship W3093354791A5011001774 @default.
- W3093354791 hasAuthorship W3093354791A5043737491 @default.
- W3093354791 hasAuthorship W3093354791A5055515730 @default.
- W3093354791 hasAuthorship W3093354791A5065221996 @default.
- W3093354791 hasConcept C100660578 @default.
- W3093354791 hasConcept C154945302 @default.
- W3093354791 hasConcept C15744967 @default.
- W3093354791 hasConcept C180747234 @default.
- W3093354791 hasConcept C190385971 @default.
- W3093354791 hasConcept C2992354236 @default.
- W3093354791 hasConcept C2993946119 @default.
- W3093354791 hasConcept C2994049219 @default.
- W3093354791 hasConcept C3017944768 @default.
- W3093354791 hasConcept C41008148 @default.
- W3093354791 hasConcept C545542383 @default.
- W3093354791 hasConcept C70410870 @default.
- W3093354791 hasConcept C71924100 @default.