Matches in SemOpenAlex for { <https://semopenalex.org/work/W3093357528> ?p ?o ?g. }
- W3093357528 endingPage "9" @default.
- W3093357528 startingPage "1" @default.
- W3093357528 abstract "Time series data are an extremely important type of data in the real world. Time series data gradually accumulate over time. Due to the dynamic growth in time series data, they tend to have higher dimensions and large data scales. When performing cluster analysis on this type of data, there are shortcomings in using traditional feature extraction methods for processing. To improve the clustering performance on time series data, this study uses a recurrent neural network (RNN) to train the input data. First, an RNN called the long short-term memory (LSTM) network is used to extract the features of time series data. Second, pooling technology is used to reduce the dimensionality of the output features in the last layer of the LSTM network. Due to the long time series, the hidden layer in the LSTM network cannot remember the information at all times. As a result, it is difficult to obtain a compressed representation of the global information in the last layer. Therefore, it is necessary to combine the information from the previous hidden unit to supplement all of the data. By stacking all the hidden unit information and performing a pooling operation, a dimensionality reduction effect of the hidden unit information is achieved. In this way, the memory loss caused by an excessively long sequence is compensated. Finally, considering that many time series data are unbalanced data, the unbalanced K-means (UK-means) algorithm is used to cluster the features after dimensionality reduction. The experiments were conducted on multiple publicly available time series datasets. The experimental results show that LSTM-based feature extraction combined with the dimensionality reduction processing of the pooling technology and cluster processing for imbalanced data used in this study has a good effect on the processing of time series data." @default.
- W3093357528 created "2020-10-22" @default.
- W3093357528 creator A5017839915 @default.
- W3093357528 creator A5081206290 @default.
- W3093357528 date "2020-10-13" @default.
- W3093357528 modified "2023-09-27" @default.
- W3093357528 title "A Novel Long- and Short-Term Memory Network with Time Series Data Analysis Capabilities" @default.
- W3093357528 cites W1148496451 @default.
- W3093357528 cites W1601330165 @default.
- W3093357528 cites W1853995153 @default.
- W3093357528 cites W1965895350 @default.
- W3093357528 cites W1966229131 @default.
- W3093357528 cites W1981166908 @default.
- W3093357528 cites W1991145960 @default.
- W3093357528 cites W1995504712 @default.
- W3093357528 cites W2002917851 @default.
- W3093357528 cites W2008204511 @default.
- W3093357528 cites W2066796814 @default.
- W3093357528 cites W2096833041 @default.
- W3093357528 cites W2108154570 @default.
- W3093357528 cites W2345189929 @default.
- W3093357528 cites W2484524103 @default.
- W3093357528 cites W2584922303 @default.
- W3093357528 cites W2608847424 @default.
- W3093357528 cites W2618241468 @default.
- W3093357528 cites W2738051834 @default.
- W3093357528 cites W2750599140 @default.
- W3093357528 cites W2754119457 @default.
- W3093357528 cites W2758602683 @default.
- W3093357528 cites W2768236879 @default.
- W3093357528 cites W2791756582 @default.
- W3093357528 cites W2804841412 @default.
- W3093357528 cites W2808597956 @default.
- W3093357528 cites W2886298143 @default.
- W3093357528 cites W2894036719 @default.
- W3093357528 cites W2901698913 @default.
- W3093357528 cites W2947925588 @default.
- W3093357528 cites W2968533460 @default.
- W3093357528 cites W2994500566 @default.
- W3093357528 cites W3000622877 @default.
- W3093357528 cites W3013077803 @default.
- W3093357528 cites W3013382035 @default.
- W3093357528 cites W3014864993 @default.
- W3093357528 cites W3016530372 @default.
- W3093357528 cites W3017299633 @default.
- W3093357528 cites W3024963902 @default.
- W3093357528 cites W3028857369 @default.
- W3093357528 cites W3041676547 @default.
- W3093357528 cites W3047024306 @default.
- W3093357528 cites W3087050764 @default.
- W3093357528 cites W4235169531 @default.
- W3093357528 doi "https://doi.org/10.1155/2020/8885625" @default.
- W3093357528 hasPublicationYear "2020" @default.
- W3093357528 type Work @default.
- W3093357528 sameAs 3093357528 @default.
- W3093357528 citedByCount "3" @default.
- W3093357528 countsByYear W30933575282021 @default.
- W3093357528 countsByYear W30933575282022 @default.
- W3093357528 countsByYear W30933575282023 @default.
- W3093357528 crossrefType "journal-article" @default.
- W3093357528 hasAuthorship W3093357528A5017839915 @default.
- W3093357528 hasAuthorship W3093357528A5081206290 @default.
- W3093357528 hasBestOaLocation W30933575281 @default.
- W3093357528 hasConcept C111030470 @default.
- W3093357528 hasConcept C119857082 @default.
- W3093357528 hasConcept C124101348 @default.
- W3093357528 hasConcept C143724316 @default.
- W3093357528 hasConcept C147168706 @default.
- W3093357528 hasConcept C151406439 @default.
- W3093357528 hasConcept C151730666 @default.
- W3093357528 hasConcept C153180895 @default.
- W3093357528 hasConcept C154945302 @default.
- W3093357528 hasConcept C41008148 @default.
- W3093357528 hasConcept C50644808 @default.
- W3093357528 hasConcept C70437156 @default.
- W3093357528 hasConcept C70518039 @default.
- W3093357528 hasConcept C73555534 @default.
- W3093357528 hasConcept C86803240 @default.
- W3093357528 hasConceptScore W3093357528C111030470 @default.
- W3093357528 hasConceptScore W3093357528C119857082 @default.
- W3093357528 hasConceptScore W3093357528C124101348 @default.
- W3093357528 hasConceptScore W3093357528C143724316 @default.
- W3093357528 hasConceptScore W3093357528C147168706 @default.
- W3093357528 hasConceptScore W3093357528C151406439 @default.
- W3093357528 hasConceptScore W3093357528C151730666 @default.
- W3093357528 hasConceptScore W3093357528C153180895 @default.
- W3093357528 hasConceptScore W3093357528C154945302 @default.
- W3093357528 hasConceptScore W3093357528C41008148 @default.
- W3093357528 hasConceptScore W3093357528C50644808 @default.
- W3093357528 hasConceptScore W3093357528C70437156 @default.
- W3093357528 hasConceptScore W3093357528C70518039 @default.
- W3093357528 hasConceptScore W3093357528C73555534 @default.
- W3093357528 hasConceptScore W3093357528C86803240 @default.
- W3093357528 hasFunder F4320326270 @default.
- W3093357528 hasLocation W30933575281 @default.
- W3093357528 hasOpenAccess W3093357528 @default.
- W3093357528 hasPrimaryLocation W30933575281 @default.
- W3093357528 hasRelatedWork W1520675566 @default.