Matches in SemOpenAlex for { <https://semopenalex.org/work/W3093359438> ?p ?o ?g. }
- W3093359438 abstract "Author(s): Akhbari, Sina | Advisor(s): Lin, Liwei | Abstract: Ultrasonic transducers have been realized as nondestructive tools for a variety of applications, such as medical imaging, diagnosis, therapy, nondestructive testing, range finding, and gesture recognitions. Ultrasonic transducers fabricated by MEMS (Microelectromechanical Systems) technologies are known to have distinct advantages over conventional ultrasound devices in terms of device resolution, bandwidth, power consumption, and cost. This work focuses on innovative architectures of Piezoelectric Micromachined Ultrasonic Transducers (pMUT) for improved electro-mechano-acoustical energy efficiency and increased sensitivity using CMOS-compatible fabrication. Specifically, curved and dual-electrode bimorph (DEB) pMUT structures have been proposed and demonstrated; pMUT systems in the form of large arrays have been analyzed and simulated; as a proof-of-concept demonstration, a DEB pMUT device has been shown for potential muscle spasm diagnosis application in power-efficient hand-held medical systems.Highly responsive curved pMUT devices have been constructed using a curved AlN layer. Prototype curved pMUTs have resonant frequencies between 1 to 4 MHz and it has been shown that curved pMUTs can in practice have 50X higher low frequency displacement per input voltage and higher electromechanical coupling comparing to flat pMUTs of the same piezoelectric material, lateral size and resonant frequency. The dynamic equations of motion of spherically-curved piezoelectric elastic shells have also been derived followed by analytical equivalent circuit modeling of curved pMUT and the results match well with the FEA simulations and experimental results. The concept, basic theory, fabrication, and testing results of dual-electrode bimorph (DEB) pMUT for both air- and liquid-coupled applications have also been presented in this thesis. Both theoretical analyses and experimental verifications under the proposed differential drive scheme display high drive sensitivity and an electromechanical coupling energy efficiency that is as high as 4X of the state-of-the-art pMUT with similar geometry, material, and frequency. The prototype transducers are fabricated in a CMOS-compatible process with radii of 100-230 μm using aluminum nitride (AlN) as the piezoelectric layers with thicknesses varying from 715 nm to 950 nm, and molybdenum (Mo) as the electrodes with thicknesses of 130 nm. The tested operation frequencies of the prototype transducers are 200-970 kHz in air for possible ranging and motion detection applications, and 250 kHz to 1 MHz in water for medical ultrasound applications such as fracture healing, tumor ablation, and transcranial sonothrombolysis. A 12×12 array structure is measured to have the highest intensity per voltage squared, per number of pMUTs squared, and per piezoelectric constant squared (In= I/(VNd31)2) among all reported pMUT arrays. The generated acoustic intensity is in the range of 30-70 mW/cm2 up to 2.5 mm from the transducer surface in mineral oil with a driving voltage of 5 Vac, which is suitable for battery-powered therapeutic ultrasound devices.Equivalent circuit models of large arrays of curved (spherical-shape) and flat pMUTs have been developed for complex pMUT arrays design and analysis. The exact solutions for circuit parameters in the electromechanical domain, such as: mechanical admittance, input electrical impedance, and electromechanical transformer ratio were analytically derived. The array model includes both the self- and mutual-acoustic radiation impedances of individual transducers in the acoustic medium. Volumetric displacement, induced piezoelectric current, and pressure field can be derived with respect to the input voltage matrix, material and geometrical properties of each individual transducer and the array structure. As such, the analytical models presented here can be used as a guideline for analyses and design evaluations of large arrays of curved and flat pMUTs efficiently, and can be further generalized to evaluate other pMUT architectures in form of single-devices or arrays. Finally, we have successfully demonstrated DEB pMUT arrays capable of detecting slight variations in mechanical properties of samples with similar characteristics to human muscles. It has been experimentally shown that 5.9% speed of sound difference between two PDMS samples can be detected by a 1D DEB pMUT array operating in pulse-echo mode at 300 kHz and driving voltages as low as 2 Vpp. As such, DEB pMUT arrays can be implemented in battery-powered handheld devices like cell-phones or used as dermal patches with external communication devices for real-time or off-line monitoring of muscle spasm due to ergonomics and repetitive strain." @default.
- W3093359438 created "2020-10-22" @default.
- W3093359438 creator A5001460355 @default.
- W3093359438 date "2016-01-01" @default.
- W3093359438 modified "2023-09-24" @default.
- W3093359438 title "Curved and bimorph piezoelectric micromachined ultrasonic transducers (PMUT)" @default.
- W3093359438 cites W134821710 @default.
- W3093359438 cites W1523204322 @default.
- W3093359438 cites W171940441 @default.
- W3093359438 cites W1849681763 @default.
- W3093359438 cites W1963416718 @default.
- W3093359438 cites W1966800086 @default.
- W3093359438 cites W1969841287 @default.
- W3093359438 cites W1972382694 @default.
- W3093359438 cites W1973589923 @default.
- W3093359438 cites W1982669912 @default.
- W3093359438 cites W1986144303 @default.
- W3093359438 cites W1989651585 @default.
- W3093359438 cites W2006491141 @default.
- W3093359438 cites W2010202125 @default.
- W3093359438 cites W2015906754 @default.
- W3093359438 cites W2027796393 @default.
- W3093359438 cites W2044680521 @default.
- W3093359438 cites W2051361163 @default.
- W3093359438 cites W2051512211 @default.
- W3093359438 cites W2061646076 @default.
- W3093359438 cites W2062303809 @default.
- W3093359438 cites W2065455715 @default.
- W3093359438 cites W2065772470 @default.
- W3093359438 cites W2066340407 @default.
- W3093359438 cites W2067913317 @default.
- W3093359438 cites W2069258316 @default.
- W3093359438 cites W2073123044 @default.
- W3093359438 cites W2083567793 @default.
- W3093359438 cites W2087525349 @default.
- W3093359438 cites W2087921477 @default.
- W3093359438 cites W2089970976 @default.
- W3093359438 cites W2090158643 @default.
- W3093359438 cites W2090701688 @default.
- W3093359438 cites W2092029860 @default.
- W3093359438 cites W2094382114 @default.
- W3093359438 cites W2097926951 @default.
- W3093359438 cites W2099218386 @default.
- W3093359438 cites W2100662440 @default.
- W3093359438 cites W2101366140 @default.
- W3093359438 cites W2116373972 @default.
- W3093359438 cites W2117302101 @default.
- W3093359438 cites W2124726994 @default.
- W3093359438 cites W2127558540 @default.
- W3093359438 cites W2130400238 @default.
- W3093359438 cites W2132106596 @default.
- W3093359438 cites W2132761218 @default.
- W3093359438 cites W2138159918 @default.
- W3093359438 cites W2138222822 @default.
- W3093359438 cites W2138568329 @default.
- W3093359438 cites W2144000876 @default.
- W3093359438 cites W2147612879 @default.
- W3093359438 cites W2150266890 @default.
- W3093359438 cites W2153009581 @default.
- W3093359438 cites W2153087427 @default.
- W3093359438 cites W2154459268 @default.
- W3093359438 cites W2159973952 @default.
- W3093359438 cites W2162314657 @default.
- W3093359438 cites W2165649385 @default.
- W3093359438 cites W2295501467 @default.
- W3093359438 cites W2315162695 @default.
- W3093359438 cites W2333157776 @default.
- W3093359438 cites W2492800852 @default.
- W3093359438 cites W2546383106 @default.
- W3093359438 cites W2739755884 @default.
- W3093359438 cites W2798512682 @default.
- W3093359438 cites W929147715 @default.
- W3093359438 cites W2010770690 @default.
- W3093359438 hasPublicationYear "2016" @default.
- W3093359438 type Work @default.
- W3093359438 sameAs 3093359438 @default.
- W3093359438 citedByCount "1" @default.
- W3093359438 countsByYear W30933594382021 @default.
- W3093359438 crossrefType "journal-article" @default.
- W3093359438 hasAuthorship W3093359438A5001460355 @default.
- W3093359438 hasConcept C100082104 @default.
- W3093359438 hasConcept C121332964 @default.
- W3093359438 hasConcept C127413603 @default.
- W3093359438 hasConcept C192562407 @default.
- W3093359438 hasConcept C24326235 @default.
- W3093359438 hasConcept C24890656 @default.
- W3093359438 hasConcept C2778393539 @default.
- W3093359438 hasConcept C37977207 @default.
- W3093359438 hasConcept C49040817 @default.
- W3093359438 hasConcept C56318395 @default.
- W3093359438 hasConcept C57693265 @default.
- W3093359438 hasConcept C58772458 @default.
- W3093359438 hasConcept C81288441 @default.
- W3093359438 hasConceptScore W3093359438C100082104 @default.
- W3093359438 hasConceptScore W3093359438C121332964 @default.
- W3093359438 hasConceptScore W3093359438C127413603 @default.
- W3093359438 hasConceptScore W3093359438C192562407 @default.
- W3093359438 hasConceptScore W3093359438C24326235 @default.
- W3093359438 hasConceptScore W3093359438C24890656 @default.
- W3093359438 hasConceptScore W3093359438C2778393539 @default.