Matches in SemOpenAlex for { <https://semopenalex.org/work/W3093360003> ?p ?o ?g. }
- W3093360003 endingPage "108605" @default.
- W3093360003 startingPage "108605" @default.
- W3093360003 abstract "The residual properties of the ball screw raceway after whirling milling are the critical factors affecting the performance of the workpiece. Comprehensive research has been conducted to investigate the residual properties (including the residual stress and full-width half-maximum (FWHM)) of the ball screw raceway in dry machining. More importantly, two kinds of machine learning methods including the neural network (NN) and support vector machine (SVM) have been proposed based on experimental data to predict the residual properties of the ball screw raceway. In the method of NN, two representative methods including the back-propagation neural network (BPNN) and radial basis function neural network (RBFNN) have been employed. The model verifications show that the average absolute relative errors of the residual stress perpendicular to the cutting direction and FWHM are very small by using the method of machine learning. The comparative analysis of the predictive models shows that SVM has a better prediction performance than NN. The accurate prediction of residual properties by SVM can provide technical support for the optimization of machining parameters and improve the performance of ball screw." @default.
- W3093360003 created "2020-10-22" @default.
- W3093360003 creator A5003642180 @default.
- W3093360003 creator A5016471708 @default.
- W3093360003 creator A5017032066 @default.
- W3093360003 creator A5023104005 @default.
- W3093360003 creator A5037744426 @default.
- W3093360003 creator A5063046834 @default.
- W3093360003 creator A5076278993 @default.
- W3093360003 date "2021-03-01" @default.
- W3093360003 modified "2023-10-17" @default.
- W3093360003 title "Predicting residual properties of ball screw raceway in whirling milling based on machine learning" @default.
- W3093360003 cites W1596717185 @default.
- W3093360003 cites W1971327724 @default.
- W3093360003 cites W1975287046 @default.
- W3093360003 cites W1997175741 @default.
- W3093360003 cites W2010152290 @default.
- W3093360003 cites W2015454961 @default.
- W3093360003 cites W2020394026 @default.
- W3093360003 cites W2043079155 @default.
- W3093360003 cites W2048293166 @default.
- W3093360003 cites W2049996334 @default.
- W3093360003 cites W2068913169 @default.
- W3093360003 cites W2077070913 @default.
- W3093360003 cites W2078569477 @default.
- W3093360003 cites W2080256756 @default.
- W3093360003 cites W2099633488 @default.
- W3093360003 cites W2151851210 @default.
- W3093360003 cites W2324682519 @default.
- W3093360003 cites W2345357457 @default.
- W3093360003 cites W2562657650 @default.
- W3093360003 cites W2576292133 @default.
- W3093360003 cites W2605945813 @default.
- W3093360003 cites W2730319634 @default.
- W3093360003 cites W2753126529 @default.
- W3093360003 cites W2769508025 @default.
- W3093360003 cites W2771872406 @default.
- W3093360003 cites W2790257567 @default.
- W3093360003 cites W2793366691 @default.
- W3093360003 cites W2804360436 @default.
- W3093360003 cites W2806238365 @default.
- W3093360003 cites W2810439513 @default.
- W3093360003 cites W2885339591 @default.
- W3093360003 cites W2886428688 @default.
- W3093360003 cites W2902342339 @default.
- W3093360003 cites W2910544540 @default.
- W3093360003 cites W2911546748 @default.
- W3093360003 cites W2938192919 @default.
- W3093360003 cites W2939300908 @default.
- W3093360003 cites W2944403453 @default.
- W3093360003 cites W2945306337 @default.
- W3093360003 cites W2947847407 @default.
- W3093360003 cites W2947926082 @default.
- W3093360003 cites W2951898318 @default.
- W3093360003 cites W2955161446 @default.
- W3093360003 cites W2956046114 @default.
- W3093360003 cites W2969434896 @default.
- W3093360003 cites W2970853812 @default.
- W3093360003 cites W2973442970 @default.
- W3093360003 cites W2979549919 @default.
- W3093360003 cites W2981015549 @default.
- W3093360003 cites W2995167577 @default.
- W3093360003 cites W2997818552 @default.
- W3093360003 cites W3001657166 @default.
- W3093360003 cites W3012316105 @default.
- W3093360003 cites W3020737944 @default.
- W3093360003 cites W3043099060 @default.
- W3093360003 cites W818863972 @default.
- W3093360003 doi "https://doi.org/10.1016/j.measurement.2020.108605" @default.
- W3093360003 hasPublicationYear "2021" @default.
- W3093360003 type Work @default.
- W3093360003 sameAs 3093360003 @default.
- W3093360003 citedByCount "8" @default.
- W3093360003 countsByYear W30933600032021 @default.
- W3093360003 countsByYear W30933600032022 @default.
- W3093360003 countsByYear W30933600032023 @default.
- W3093360003 crossrefType "journal-article" @default.
- W3093360003 hasAuthorship W3093360003A5003642180 @default.
- W3093360003 hasAuthorship W3093360003A5016471708 @default.
- W3093360003 hasAuthorship W3093360003A5017032066 @default.
- W3093360003 hasAuthorship W3093360003A5023104005 @default.
- W3093360003 hasAuthorship W3093360003A5037744426 @default.
- W3093360003 hasAuthorship W3093360003A5063046834 @default.
- W3093360003 hasAuthorship W3093360003A5076278993 @default.
- W3093360003 hasConcept C11413529 @default.
- W3093360003 hasConcept C119857082 @default.
- W3093360003 hasConcept C122041747 @default.
- W3093360003 hasConcept C12267149 @default.
- W3093360003 hasConcept C127413603 @default.
- W3093360003 hasConcept C135628077 @default.
- W3093360003 hasConcept C154945302 @default.
- W3093360003 hasConcept C155512373 @default.
- W3093360003 hasConcept C159985019 @default.
- W3093360003 hasConcept C184547230 @default.
- W3093360003 hasConcept C192562407 @default.
- W3093360003 hasConcept C199631012 @default.
- W3093360003 hasConcept C206391251 @default.
- W3093360003 hasConcept C2524010 @default.