Matches in SemOpenAlex for { <https://semopenalex.org/work/W3093394156> ?p ?o ?g. }
- W3093394156 endingPage "101832" @default.
- W3093394156 startingPage "101832" @default.
- W3093394156 abstract "Segmentation of medical images, particularly late gadolinium-enhanced magnetic resonance imaging (LGE-MRI) used for visualizing diseased atrial structures, is a crucial first step for ablation treatment of atrial fibrillation. However, direct segmentation of LGE-MRIs is challenging due to the varying intensities caused by contrast agents. Since most clinical studies have relied on manual, labor-intensive approaches, automatic methods are of high interest, particularly optimized machine learning approaches. To address this, we organized the 2018 Left Atrium Segmentation Challenge using 154 3D LGE-MRIs, currently the world's largest atrial LGE-MRI dataset, and associated labels of the left atrium segmented by three medical experts, ultimately attracting the participation of 27 international teams. In this paper, extensive analysis of the submitted algorithms using technical and biological metrics was performed by undergoing subgroup analysis and conducting hyper-parameter analysis, offering an overall picture of the major design choices of convolutional neural networks (CNNs) and practical considerations for achieving state-of-the-art left atrium segmentation. Results show that the top method achieved a Dice score of 93.2% and a mean surface to surface distance of 0.7 mm, significantly outperforming prior state-of-the-art. Particularly, our analysis demonstrated that double sequentially used CNNs, in which a first CNN is used for automatic region-of-interest localization and a subsequent CNN is used for refined regional segmentation, achieved superior results than traditional methods and machine learning approaches containing single CNNs. This large-scale benchmarking study makes a significant step towards much-improved segmentation methods for atrial LGE-MRIs, and will serve as an important benchmark for evaluating and comparing the future works in the field. Furthermore, the findings from this study can potentially be extended to other imaging datasets and modalities, having an impact on the wider medical imaging community." @default.
- W3093394156 created "2020-10-22" @default.
- W3093394156 creator A5002368368 @default.
- W3093394156 creator A5003074251 @default.
- W3093394156 creator A5006461848 @default.
- W3093394156 creator A5008103968 @default.
- W3093394156 creator A5008720623 @default.
- W3093394156 creator A5009527958 @default.
- W3093394156 creator A5010990212 @default.
- W3093394156 creator A5011662977 @default.
- W3093394156 creator A5012868605 @default.
- W3093394156 creator A5014870613 @default.
- W3093394156 creator A5017262410 @default.
- W3093394156 creator A5027395143 @default.
- W3093394156 creator A5028217553 @default.
- W3093394156 creator A5028732483 @default.
- W3093394156 creator A5028752528 @default.
- W3093394156 creator A5030592784 @default.
- W3093394156 creator A5030861174 @default.
- W3093394156 creator A5032499810 @default.
- W3093394156 creator A5032708386 @default.
- W3093394156 creator A5045347918 @default.
- W3093394156 creator A5049558861 @default.
- W3093394156 creator A5050968498 @default.
- W3093394156 creator A5051649145 @default.
- W3093394156 creator A5056235786 @default.
- W3093394156 creator A5056289980 @default.
- W3093394156 creator A5056608507 @default.
- W3093394156 creator A5058537401 @default.
- W3093394156 creator A5059823739 @default.
- W3093394156 creator A5060301654 @default.
- W3093394156 creator A5062785784 @default.
- W3093394156 creator A5063253432 @default.
- W3093394156 creator A5065374358 @default.
- W3093394156 creator A5065418938 @default.
- W3093394156 creator A5068813606 @default.
- W3093394156 creator A5070013751 @default.
- W3093394156 creator A5073918042 @default.
- W3093394156 creator A5077843387 @default.
- W3093394156 creator A5080786473 @default.
- W3093394156 creator A5084926128 @default.
- W3093394156 creator A5085599943 @default.
- W3093394156 creator A5086292677 @default.
- W3093394156 creator A5088137293 @default.
- W3093394156 creator A5089487980 @default.
- W3093394156 creator A5090022998 @default.
- W3093394156 date "2021-01-01" @default.
- W3093394156 modified "2023-10-18" @default.
- W3093394156 title "A global benchmark of algorithms for segmenting the left atrium from late gadolinium-enhanced cardiac magnetic resonance imaging" @default.
- W3093394156 cites W2043449804 @default.
- W3093394156 cites W2046289434 @default.
- W3093394156 cites W2056495535 @default.
- W3093394156 cites W2105894476 @default.
- W3093394156 cites W2161941563 @default.
- W3093394156 cites W2236355562 @default.
- W3093394156 cites W2607545421 @default.
- W3093394156 cites W2748189346 @default.
- W3093394156 cites W2758694956 @default.
- W3093394156 cites W2765802832 @default.
- W3093394156 cites W2799309865 @default.
- W3093394156 cites W2804047627 @default.
- W3093394156 cites W2888400665 @default.
- W3093394156 cites W2889158831 @default.
- W3093394156 cites W2985053749 @default.
- W3093394156 cites W3005437975 @default.
- W3093394156 cites W4241787440 @default.
- W3093394156 doi "https://doi.org/10.1016/j.media.2020.101832" @default.
- W3093394156 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33166776" @default.
- W3093394156 hasPublicationYear "2021" @default.
- W3093394156 type Work @default.
- W3093394156 sameAs 3093394156 @default.
- W3093394156 citedByCount "121" @default.
- W3093394156 countsByYear W30933941562020 @default.
- W3093394156 countsByYear W30933941562021 @default.
- W3093394156 countsByYear W30933941562022 @default.
- W3093394156 countsByYear W30933941562023 @default.
- W3093394156 crossrefType "journal-article" @default.
- W3093394156 hasAuthorship W3093394156A5002368368 @default.
- W3093394156 hasAuthorship W3093394156A5003074251 @default.
- W3093394156 hasAuthorship W3093394156A5006461848 @default.
- W3093394156 hasAuthorship W3093394156A5008103968 @default.
- W3093394156 hasAuthorship W3093394156A5008720623 @default.
- W3093394156 hasAuthorship W3093394156A5009527958 @default.
- W3093394156 hasAuthorship W3093394156A5010990212 @default.
- W3093394156 hasAuthorship W3093394156A5011662977 @default.
- W3093394156 hasAuthorship W3093394156A5012868605 @default.
- W3093394156 hasAuthorship W3093394156A5014870613 @default.
- W3093394156 hasAuthorship W3093394156A5017262410 @default.
- W3093394156 hasAuthorship W3093394156A5027395143 @default.
- W3093394156 hasAuthorship W3093394156A5028217553 @default.
- W3093394156 hasAuthorship W3093394156A5028732483 @default.
- W3093394156 hasAuthorship W3093394156A5028752528 @default.
- W3093394156 hasAuthorship W3093394156A5030592784 @default.
- W3093394156 hasAuthorship W3093394156A5030861174 @default.
- W3093394156 hasAuthorship W3093394156A5032499810 @default.
- W3093394156 hasAuthorship W3093394156A5032708386 @default.
- W3093394156 hasAuthorship W3093394156A5045347918 @default.
- W3093394156 hasAuthorship W3093394156A5049558861 @default.