Matches in SemOpenAlex for { <https://semopenalex.org/work/W3093413477> ?p ?o ?g. }
- W3093413477 endingPage "108" @default.
- W3093413477 startingPage "81" @default.
- W3093413477 abstract "High-dimensional data sets have become ubiquitous in the past few decades, often with many more covariates than observations. In the frequentist setting, penalized likelihood methods are the most popular approach for variable selection and estimation in high-dimensional data. In the Bayesian framework, spike-and-slab methods are commonly used as probabilistic constructs for high-dimensional modeling. Within the context of linear regression, Rockova and George (2018) introduced the spike-and-slab LASSO (SSL), an approach based on a prior which provides a continuum between the penalized likelihood LASSO and the Bayesian point-mass spike-and-slab formulations. Since its inception, the spike-and-slab LASSO has been extended to a variety of contexts, including generalized linear models, factor analysis, graphical models, and nonparametric regression. The goal of this paper is to survey the landscape surrounding spike-and-slab LASSO methodology. First we elucidate the attractive properties and the computational tractability of SSL priors in high dimensions. We then review methodological developments of the SSL and outline several theoretical developments. We illustrate the methodology on both simulated and real datasets." @default.
- W3093413477 created "2020-10-22" @default.
- W3093413477 creator A5013532156 @default.
- W3093413477 creator A5037288421 @default.
- W3093413477 creator A5091109856 @default.
- W3093413477 date "2021-12-06" @default.
- W3093413477 modified "2023-10-01" @default.
- W3093413477 title "Spike-and-Slab Meets LASSO: A Review of the Spike-and-Slab LASSO" @default.
- W3093413477 cites W1916786071 @default.
- W3093413477 cites W1964809923 @default.
- W3093413477 cites W1965125844 @default.
- W3093413477 cites W1965169081 @default.
- W3093413477 cites W1966411627 @default.
- W3093413477 cites W1969415786 @default.
- W3093413477 cites W1981299323 @default.
- W3093413477 cites W1982652137 @default.
- W3093413477 cites W1991108537 @default.
- W3093413477 cites W1992402718 @default.
- W3093413477 cites W1999974018 @default.
- W3093413477 cites W2007069447 @default.
- W3093413477 cites W2007463795 @default.
- W3093413477 cites W2020925091 @default.
- W3093413477 cites W2055025635 @default.
- W3093413477 cites W2061598070 @default.
- W3093413477 cites W2062532221 @default.
- W3093413477 cites W2069119359 @default.
- W3093413477 cites W2074682976 @default.
- W3093413477 cites W2097360283 @default.
- W3093413477 cites W2104827998 @default.
- W3093413477 cites W2109553965 @default.
- W3093413477 cites W2114169935 @default.
- W3093413477 cites W2114810168 @default.
- W3093413477 cites W2120875981 @default.
- W3093413477 cites W2122825543 @default.
- W3093413477 cites W2132555912 @default.
- W3093413477 cites W2135046866 @default.
- W3093413477 cites W2138019504 @default.
- W3093413477 cites W2150149003 @default.
- W3093413477 cites W2150291618 @default.
- W3093413477 cites W2154972590 @default.
- W3093413477 cites W2157801062 @default.
- W3093413477 cites W2160842550 @default.
- W3093413477 cites W2162888823 @default.
- W3093413477 cites W2462698273 @default.
- W3093413477 cites W2514253892 @default.
- W3093413477 cites W2543202932 @default.
- W3093413477 cites W2566065221 @default.
- W3093413477 cites W2611594661 @default.
- W3093413477 cites W2751495563 @default.
- W3093413477 cites W2766879793 @default.
- W3093413477 cites W2788365376 @default.
- W3093413477 cites W2802528245 @default.
- W3093413477 cites W2806706576 @default.
- W3093413477 cites W2883429840 @default.
- W3093413477 cites W2901731971 @default.
- W3093413477 cites W2961393948 @default.
- W3093413477 cites W2962779401 @default.
- W3093413477 cites W2963013132 @default.
- W3093413477 cites W2963047405 @default.
- W3093413477 cites W2963108610 @default.
- W3093413477 cites W2963113868 @default.
- W3093413477 cites W2963347443 @default.
- W3093413477 cites W2963680191 @default.
- W3093413477 cites W3028553139 @default.
- W3093413477 cites W3032424741 @default.
- W3093413477 cites W3098834468 @default.
- W3093413477 cites W3099550161 @default.
- W3093413477 cites W3102998992 @default.
- W3093413477 cites W3104393726 @default.
- W3093413477 cites W3121832289 @default.
- W3093413477 cites W3125452207 @default.
- W3093413477 cites W3138461867 @default.
- W3093413477 doi "https://doi.org/10.1201/9781003089018-4" @default.
- W3093413477 hasPublicationYear "2021" @default.
- W3093413477 type Work @default.
- W3093413477 sameAs 3093413477 @default.
- W3093413477 citedByCount "12" @default.
- W3093413477 countsByYear W30934134772021 @default.
- W3093413477 countsByYear W30934134772022 @default.
- W3093413477 countsByYear W30934134772023 @default.
- W3093413477 crossrefType "book-chapter" @default.
- W3093413477 hasAuthorship W3093413477A5013532156 @default.
- W3093413477 hasAuthorship W3093413477A5037288421 @default.
- W3093413477 hasAuthorship W3093413477A5091109856 @default.
- W3093413477 hasBestOaLocation W30934134772 @default.
- W3093413477 hasConcept C107673813 @default.
- W3093413477 hasConcept C11413529 @default.
- W3093413477 hasConcept C115903868 @default.
- W3093413477 hasConcept C119857082 @default.
- W3093413477 hasConcept C136764020 @default.
- W3093413477 hasConcept C154945302 @default.
- W3093413477 hasConcept C155846161 @default.
- W3093413477 hasConcept C160234255 @default.
- W3093413477 hasConcept C162376815 @default.
- W3093413477 hasConcept C166957645 @default.
- W3093413477 hasConcept C177769412 @default.
- W3093413477 hasConcept C205649164 @default.
- W3093413477 hasConcept C2779343474 @default.