Matches in SemOpenAlex for { <https://semopenalex.org/work/W3093463789> ?p ?o ?g. }
- W3093463789 endingPage "5420" @default.
- W3093463789 startingPage "5420" @default.
- W3093463789 abstract "The importance of price forecasting has gained attention over the last few years, with the growth of aggregators and the general opening of the European electricity markets. Market participants manage a tradeoff between, bidding in a lower price market (day-ahead), but with typically higher volume, or aiming for a lower volume market but with potentially higher returns (balance energy market). Companies try to forecast the extremes of revenues or prices, in order to manage risk and opportunity, assigning their assets in an optimal way. It is thought that in general, electricity markets have quasi-deterministic principles, rather than being based on speculation, hence the desire to forecast the price based on variables that can describe the outcome of the market. Many studies address this problem from a statistical approach or by performing multiple-variable regressions, but they very often focus only on the time series analysis. In 2019, the Loss of Load Probability (LOLP) was made available in the UK for the first time. Taking this opportunity, this study focusses on five LOLP variables (with different time-ahead estimations) and other quasi-deterministic variables, to explain the price behavior of a multi-variable regression model. These include base production, system load, solar and wind generation, seasonality, day-ahead price and imbalance volume contributions. Three machine-learning algorithms were applied to test for performance, Gradient Boosting (GB), Random Forest (RF) and XGBoost. XGBoost presented higher performance and so it was chosen for the implementation of the real time forecast step. The model returns a Mean Absolute Error (MAE) of 7.89 £/MWh, a coefficient of determination (R2 score) of 76.8% and a Mean Squared Error (MSE) of 124.74. The variables that contribute the most to the model are the Net Imbalance Volume, the LOLP (aggregated), the month and the De-rated margins (aggregated) with 28.6%, 27.5%, 14.0%, and 8.9% of weight on feature importance respectively." @default.
- W3093463789 created "2020-10-22" @default.
- W3093463789 creator A5002665148 @default.
- W3093463789 creator A5036523963 @default.
- W3093463789 creator A5054587825 @default.
- W3093463789 creator A5084205874 @default.
- W3093463789 date "2020-10-16" @default.
- W3093463789 modified "2023-10-03" @default.
- W3093463789 title "Price Forecasting for the Balancing Energy Market Using Machine-Learning Regression" @default.
- W3093463789 cites W1678356000 @default.
- W3093463789 cites W1969995275 @default.
- W3093463789 cites W1986748415 @default.
- W3093463789 cites W1989182416 @default.
- W3093463789 cites W2000162856 @default.
- W3093463789 cites W2034269318 @default.
- W3093463789 cites W2046078280 @default.
- W3093463789 cites W2049986915 @default.
- W3093463789 cites W2063579368 @default.
- W3093463789 cites W2072516956 @default.
- W3093463789 cites W2073355897 @default.
- W3093463789 cites W2076726571 @default.
- W3093463789 cites W2088493201 @default.
- W3093463789 cites W2089217930 @default.
- W3093463789 cites W2105624819 @default.
- W3093463789 cites W2106196399 @default.
- W3093463789 cites W2113970484 @default.
- W3093463789 cites W2117101278 @default.
- W3093463789 cites W2120736696 @default.
- W3093463789 cites W2122671960 @default.
- W3093463789 cites W2129620729 @default.
- W3093463789 cites W2140924268 @default.
- W3093463789 cites W2145777288 @default.
- W3093463789 cites W2147153526 @default.
- W3093463789 cites W2161145887 @default.
- W3093463789 cites W2166151355 @default.
- W3093463789 cites W2315598830 @default.
- W3093463789 cites W2802410020 @default.
- W3093463789 cites W2911964244 @default.
- W3093463789 cites W2921578338 @default.
- W3093463789 cites W2963978974 @default.
- W3093463789 cites W3020913752 @default.
- W3093463789 cites W3023939952 @default.
- W3093463789 cites W3122855307 @default.
- W3093463789 cites W3123309206 @default.
- W3093463789 cites W3124309035 @default.
- W3093463789 cites W3126130349 @default.
- W3093463789 cites W4250542689 @default.
- W3093463789 doi "https://doi.org/10.3390/en13205420" @default.
- W3093463789 hasPublicationYear "2020" @default.
- W3093463789 type Work @default.
- W3093463789 sameAs 3093463789 @default.
- W3093463789 citedByCount "21" @default.
- W3093463789 countsByYear W30934637892021 @default.
- W3093463789 countsByYear W30934637892022 @default.
- W3093463789 countsByYear W30934637892023 @default.
- W3093463789 crossrefType "journal-article" @default.
- W3093463789 hasAuthorship W3093463789A5002665148 @default.
- W3093463789 hasAuthorship W3093463789A5036523963 @default.
- W3093463789 hasAuthorship W3093463789A5054587825 @default.
- W3093463789 hasAuthorship W3093463789A5084205874 @default.
- W3093463789 hasBestOaLocation W30934637891 @default.
- W3093463789 hasConcept C10138342 @default.
- W3093463789 hasConcept C119599485 @default.
- W3093463789 hasConcept C122282355 @default.
- W3093463789 hasConcept C127413603 @default.
- W3093463789 hasConcept C134306372 @default.
- W3093463789 hasConcept C146733006 @default.
- W3093463789 hasConcept C149782125 @default.
- W3093463789 hasConcept C154945302 @default.
- W3093463789 hasConcept C162324750 @default.
- W3093463789 hasConcept C169258074 @default.
- W3093463789 hasConcept C175444787 @default.
- W3093463789 hasConcept C182365436 @default.
- W3093463789 hasConcept C195487862 @default.
- W3093463789 hasConcept C206658404 @default.
- W3093463789 hasConcept C33923547 @default.
- W3093463789 hasConcept C41008148 @default.
- W3093463789 hasConcept C49937458 @default.
- W3093463789 hasConcept C70153297 @default.
- W3093463789 hasConcept C9233905 @default.
- W3093463789 hasConceptScore W3093463789C10138342 @default.
- W3093463789 hasConceptScore W3093463789C119599485 @default.
- W3093463789 hasConceptScore W3093463789C122282355 @default.
- W3093463789 hasConceptScore W3093463789C127413603 @default.
- W3093463789 hasConceptScore W3093463789C134306372 @default.
- W3093463789 hasConceptScore W3093463789C146733006 @default.
- W3093463789 hasConceptScore W3093463789C149782125 @default.
- W3093463789 hasConceptScore W3093463789C154945302 @default.
- W3093463789 hasConceptScore W3093463789C162324750 @default.
- W3093463789 hasConceptScore W3093463789C169258074 @default.
- W3093463789 hasConceptScore W3093463789C175444787 @default.
- W3093463789 hasConceptScore W3093463789C182365436 @default.
- W3093463789 hasConceptScore W3093463789C195487862 @default.
- W3093463789 hasConceptScore W3093463789C206658404 @default.
- W3093463789 hasConceptScore W3093463789C33923547 @default.
- W3093463789 hasConceptScore W3093463789C41008148 @default.
- W3093463789 hasConceptScore W3093463789C49937458 @default.
- W3093463789 hasConceptScore W3093463789C70153297 @default.