Matches in SemOpenAlex for { <https://semopenalex.org/work/W3093483861> ?p ?o ?g. }
- W3093483861 endingPage "577" @default.
- W3093483861 startingPage "563" @default.
- W3093483861 abstract "Like many psychological scales, depression scales are ordinal in nature. Depression prediction from behavioral signals has so far been posed either as classification or regression problems. However, these naive approaches have fundamental issues because they are not focused on ranking, unlike ordinal regression, which is the most appropriate approach. Ordinal regression to date has comparatively few methods when compared with other branches in machine learning, and its usage is limited to specific research domains. Ordinal logistic regression (OLR) is one such method, which is an extension for ordinal data of the well-known logistic regression, but is not familiar in speech processing, affective computing or depression prediction. The primary aim of this article is to investigate proportionality structures and model selection for the design of ordinal regression systems within the logistic regression framework. A new greedy-based algorithm for partial proportional odds model selection (GREP) is proposed that allows the parsimonious design of effective ordinal logistic regression models, which avoids an exhaustive search and outperforms model selection using the Brant test. Evaluations on the DAIC-WOZ and AViD depression corpora show that OLR models exploiting GREP can outperform two competitive baseline systems (GSR and CNN), in terms of both RMSE and Spearman correlation." @default.
- W3093483861 created "2020-10-29" @default.
- W3093483861 creator A5021883844 @default.
- W3093483861 creator A5028116210 @default.
- W3093483861 creator A5030922449 @default.
- W3093483861 date "2023-01-01" @default.
- W3093483861 modified "2023-09-25" @default.
- W3093483861 title "Ordinal Logistic Regression With Partial Proportional Odds for Depression Prediction" @default.
- W3093483861 cites W1501627432 @default.
- W3093483861 cites W1509211586 @default.
- W3093483861 cites W1515481220 @default.
- W3093483861 cites W1552131823 @default.
- W3093483861 cites W192858080 @default.
- W3093483861 cites W1933293707 @default.
- W3093483861 cites W1965520710 @default.
- W3093483861 cites W1969121061 @default.
- W3093483861 cites W1973217014 @default.
- W3093483861 cites W1976066595 @default.
- W3093483861 cites W1993008008 @default.
- W3093483861 cites W2000149402 @default.
- W3093483861 cites W2003502731 @default.
- W3093483861 cites W2009486233 @default.
- W3093483861 cites W2016013569 @default.
- W3093483861 cites W2016770751 @default.
- W3093483861 cites W2027192823 @default.
- W3093483861 cites W2028042040 @default.
- W3093483861 cites W2048533792 @default.
- W3093483861 cites W2050797895 @default.
- W3093483861 cites W2054563771 @default.
- W3093483861 cites W2057468507 @default.
- W3093483861 cites W2058158720 @default.
- W3093483861 cites W2071157591 @default.
- W3093483861 cites W2072833030 @default.
- W3093483861 cites W2084242110 @default.
- W3093483861 cites W2084253467 @default.
- W3093483861 cites W2090777335 @default.
- W3093483861 cites W2095176743 @default.
- W3093483861 cites W2095959744 @default.
- W3093483861 cites W2102505790 @default.
- W3093483861 cites W2102705755 @default.
- W3093483861 cites W2119534679 @default.
- W3093483861 cites W2140136927 @default.
- W3093483861 cites W2142084376 @default.
- W3093483861 cites W2143331230 @default.
- W3093483861 cites W2144723972 @default.
- W3093483861 cites W2147232804 @default.
- W3093483861 cites W214995755 @default.
- W3093483861 cites W2154278880 @default.
- W3093483861 cites W2158443418 @default.
- W3093483861 cites W2163928333 @default.
- W3093483861 cites W2164487427 @default.
- W3093483861 cites W2168561756 @default.
- W3093483861 cites W2239141610 @default.
- W3093483861 cites W2270987589 @default.
- W3093483861 cites W2320134621 @default.
- W3093483861 cites W2338085936 @default.
- W3093483861 cites W2394851080 @default.
- W3093483861 cites W2396139642 @default.
- W3093483861 cites W2406935984 @default.
- W3093483861 cites W2407148078 @default.
- W3093483861 cites W2480455979 @default.
- W3093483861 cites W2529925562 @default.
- W3093483861 cites W2530421149 @default.
- W3093483861 cites W2530431529 @default.
- W3093483861 cites W2531418142 @default.
- W3093483861 cites W2751214333 @default.
- W3093483861 cites W2765540322 @default.
- W3093483861 cites W2766211031 @default.
- W3093483861 cites W2787552263 @default.
- W3093483861 cites W2796239036 @default.
- W3093483861 cites W2893536541 @default.
- W3093483861 cites W2936034011 @default.
- W3093483861 cites W2981677410 @default.
- W3093483861 cites W2981882673 @default.
- W3093483861 cites W2990286997 @default.
- W3093483861 doi "https://doi.org/10.1109/taffc.2020.3031300" @default.
- W3093483861 hasPublicationYear "2023" @default.
- W3093483861 type Work @default.
- W3093483861 sameAs 3093483861 @default.
- W3093483861 citedByCount "6" @default.
- W3093483861 countsByYear W30934838612021 @default.
- W3093483861 countsByYear W30934838612022 @default.
- W3093483861 countsByYear W30934838612023 @default.
- W3093483861 crossrefType "journal-article" @default.
- W3093483861 hasAuthorship W3093483861A5021883844 @default.
- W3093483861 hasAuthorship W3093483861A5028116210 @default.
- W3093483861 hasAuthorship W3093483861A5030922449 @default.
- W3093483861 hasConcept C105795698 @default.
- W3093483861 hasConcept C110313322 @default.
- W3093483861 hasConcept C119857082 @default.
- W3093483861 hasConcept C120068334 @default.
- W3093483861 hasConcept C124101348 @default.
- W3093483861 hasConcept C148483581 @default.
- W3093483861 hasConcept C151956035 @default.
- W3093483861 hasConcept C152877465 @default.
- W3093483861 hasConcept C154945302 @default.
- W3093483861 hasConcept C189430467 @default.
- W3093483861 hasConcept C2909711754 @default.