Matches in SemOpenAlex for { <https://semopenalex.org/work/W3093525770> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W3093525770 abstract "Heart disease is a leading cause of death worldwide. However, it remains difficult for clinicians to predict heart disease as it is a complex and costly task. Hence, we proposed a clinical support system for predicting heart disease to help clinicians with diagnostic and make better decisions. Machine learning algorithms such as Naïve Bayes, K-Nearest Neighbor, Support Vector Machine, Random Forest, and Decision Tree are applied in this study for predicting Heart Disease using risk factors data retrieved from medical files. Several experiments have been conducted to predict HD using the UCI data set, and the outcome reveals that Naïve Bayes outperforms using both cross-validation and train-test split techniques with an accuracy of 82.17%, 84.28%, respectively. The second conclusion is that the accuracy of all algorithm decrease after applying the cross-validation technique. Finally, we suggested multi validation techniques in prospectively collected data towards the approval of the proposed approach." @default.
- W3093525770 created "2020-10-29" @default.
- W3093525770 creator A5000332968 @default.
- W3093525770 creator A5013924285 @default.
- W3093525770 creator A5014608619 @default.
- W3093525770 creator A5090960179 @default.
- W3093525770 date "2020-09-01" @default.
- W3093525770 modified "2023-09-27" @default.
- W3093525770 title "A Clinical support system for Prediction of Heart Disease using Machine Learning Techniques" @default.
- W3093525770 cites W1850308234 @default.
- W3093525770 cites W1976193075 @default.
- W3093525770 cites W2022058268 @default.
- W3093525770 cites W2142711599 @default.
- W3093525770 cites W2262790950 @default.
- W3093525770 cites W2505975774 @default.
- W3093525770 cites W2566407663 @default.
- W3093525770 cites W2579725890 @default.
- W3093525770 cites W2792316459 @default.
- W3093525770 cites W2886534716 @default.
- W3093525770 cites W2900399448 @default.
- W3093525770 cites W4236137412 @default.
- W3093525770 cites W4238530616 @default.
- W3093525770 cites W4239510810 @default.
- W3093525770 doi "https://doi.org/10.1109/atsip49331.2020.9231760" @default.
- W3093525770 hasPublicationYear "2020" @default.
- W3093525770 type Work @default.
- W3093525770 sameAs 3093525770 @default.
- W3093525770 citedByCount "14" @default.
- W3093525770 countsByYear W30935257702021 @default.
- W3093525770 countsByYear W30935257702022 @default.
- W3093525770 countsByYear W30935257702023 @default.
- W3093525770 crossrefType "proceedings-article" @default.
- W3093525770 hasAuthorship W3093525770A5000332968 @default.
- W3093525770 hasAuthorship W3093525770A5013924285 @default.
- W3093525770 hasAuthorship W3093525770A5014608619 @default.
- W3093525770 hasAuthorship W3093525770A5090960179 @default.
- W3093525770 hasConcept C107673813 @default.
- W3093525770 hasConcept C119857082 @default.
- W3093525770 hasConcept C12267149 @default.
- W3093525770 hasConcept C124101348 @default.
- W3093525770 hasConcept C127413603 @default.
- W3093525770 hasConcept C154945302 @default.
- W3093525770 hasConcept C164705383 @default.
- W3093525770 hasConcept C169258074 @default.
- W3093525770 hasConcept C169903167 @default.
- W3093525770 hasConcept C177264268 @default.
- W3093525770 hasConcept C199360897 @default.
- W3093525770 hasConcept C201995342 @default.
- W3093525770 hasConcept C207201462 @default.
- W3093525770 hasConcept C27181475 @default.
- W3093525770 hasConcept C2780074459 @default.
- W3093525770 hasConcept C2780451532 @default.
- W3093525770 hasConcept C41008148 @default.
- W3093525770 hasConcept C52001869 @default.
- W3093525770 hasConcept C58489278 @default.
- W3093525770 hasConcept C71924100 @default.
- W3093525770 hasConcept C84525736 @default.
- W3093525770 hasConceptScore W3093525770C107673813 @default.
- W3093525770 hasConceptScore W3093525770C119857082 @default.
- W3093525770 hasConceptScore W3093525770C12267149 @default.
- W3093525770 hasConceptScore W3093525770C124101348 @default.
- W3093525770 hasConceptScore W3093525770C127413603 @default.
- W3093525770 hasConceptScore W3093525770C154945302 @default.
- W3093525770 hasConceptScore W3093525770C164705383 @default.
- W3093525770 hasConceptScore W3093525770C169258074 @default.
- W3093525770 hasConceptScore W3093525770C169903167 @default.
- W3093525770 hasConceptScore W3093525770C177264268 @default.
- W3093525770 hasConceptScore W3093525770C199360897 @default.
- W3093525770 hasConceptScore W3093525770C201995342 @default.
- W3093525770 hasConceptScore W3093525770C207201462 @default.
- W3093525770 hasConceptScore W3093525770C27181475 @default.
- W3093525770 hasConceptScore W3093525770C2780074459 @default.
- W3093525770 hasConceptScore W3093525770C2780451532 @default.
- W3093525770 hasConceptScore W3093525770C41008148 @default.
- W3093525770 hasConceptScore W3093525770C52001869 @default.
- W3093525770 hasConceptScore W3093525770C58489278 @default.
- W3093525770 hasConceptScore W3093525770C71924100 @default.
- W3093525770 hasConceptScore W3093525770C84525736 @default.
- W3093525770 hasLocation W30935257701 @default.
- W3093525770 hasOpenAccess W3093525770 @default.
- W3093525770 hasPrimaryLocation W30935257701 @default.
- W3093525770 hasRelatedWork W2936522960 @default.
- W3093525770 hasRelatedWork W3093525770 @default.
- W3093525770 hasRelatedWork W3127425528 @default.
- W3093525770 hasRelatedWork W3143658565 @default.
- W3093525770 hasRelatedWork W4246246790 @default.
- W3093525770 hasRelatedWork W4280583453 @default.
- W3093525770 hasRelatedWork W4285343791 @default.
- W3093525770 hasRelatedWork W4313526343 @default.
- W3093525770 hasRelatedWork W4376059206 @default.
- W3093525770 hasRelatedWork W4381569929 @default.
- W3093525770 isParatext "false" @default.
- W3093525770 isRetracted "false" @default.
- W3093525770 magId "3093525770" @default.
- W3093525770 workType "article" @default.