Matches in SemOpenAlex for { <https://semopenalex.org/work/W3093564170> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W3093564170 abstract "High-dimensional of image data is an obstacle for clustering. One of methods to solve it is feature representation learning. However, if the image is distorted or suffers from the influence of noise, the extraction of effective features may be difficult. In this paper, an end-to-end feature learning model is proposed to extract denoising low-dimensional representations from distorted images, and these denoising features are evaluated by comparing with several feature representation methods in clustering task. First, some related works about classical feature learning are introduced. Then the architecture and working mechanism of denoising feature learning model are presented. As the structural characteristics of this model, it can obtain essential information from image to decrease reconstruction error. When facing with corrupted data, it also runs a robust clustering result. Finally, compared to other unsupervised feature learning methods, extensive experiments demonstrate that the obtained feature representations by proposed model run a competitive clustering performance. The low-dimensional representations can replace the original datasets primely." @default.
- W3093564170 created "2020-10-29" @default.
- W3093564170 creator A5001505336 @default.
- W3093564170 creator A5039973913 @default.
- W3093564170 creator A5045753829 @default.
- W3093564170 date "2020-10-24" @default.
- W3093564170 modified "2023-10-16" @default.
- W3093564170 title "Unsupervised Clustering for Distorted Image with Denoising Feature Learning" @default.
- W3093564170 cites W1523794535 @default.
- W3093564170 cites W1576613474 @default.
- W3093564170 cites W1652955026 @default.
- W3093564170 cites W177994846 @default.
- W3093564170 cites W1881452810 @default.
- W3093564170 cites W1987246402 @default.
- W3093564170 cites W1997112725 @default.
- W3093564170 cites W2015648984 @default.
- W3093564170 cites W2050173620 @default.
- W3093564170 cites W2053186076 @default.
- W3093564170 cites W2062857082 @default.
- W3093564170 cites W2068305294 @default.
- W3093564170 cites W2071128523 @default.
- W3093564170 cites W2123921160 @default.
- W3093564170 cites W2154872931 @default.
- W3093564170 cites W2173520492 @default.
- W3093564170 cites W2177066871 @default.
- W3093564170 cites W2293118840 @default.
- W3093564170 cites W2470142083 @default.
- W3093564170 cites W2536981762 @default.
- W3093564170 cites W2556806401 @default.
- W3093564170 cites W2884586244 @default.
- W3093564170 cites W568124517 @default.
- W3093564170 cites W648994142 @default.
- W3093564170 doi "https://doi.org/10.5121/csit.2020.101202" @default.
- W3093564170 hasPublicationYear "2020" @default.
- W3093564170 type Work @default.
- W3093564170 sameAs 3093564170 @default.
- W3093564170 citedByCount "0" @default.
- W3093564170 crossrefType "proceedings-article" @default.
- W3093564170 hasAuthorship W3093564170A5001505336 @default.
- W3093564170 hasAuthorship W3093564170A5039973913 @default.
- W3093564170 hasAuthorship W3093564170A5045753829 @default.
- W3093564170 hasConcept C115961682 @default.
- W3093564170 hasConcept C138885662 @default.
- W3093564170 hasConcept C153180895 @default.
- W3093564170 hasConcept C154945302 @default.
- W3093564170 hasConcept C163294075 @default.
- W3093564170 hasConcept C17744445 @default.
- W3093564170 hasConcept C199539241 @default.
- W3093564170 hasConcept C2776359362 @default.
- W3093564170 hasConcept C2776401178 @default.
- W3093564170 hasConcept C41008148 @default.
- W3093564170 hasConcept C41895202 @default.
- W3093564170 hasConcept C52622490 @default.
- W3093564170 hasConcept C59404180 @default.
- W3093564170 hasConcept C73555534 @default.
- W3093564170 hasConcept C8038995 @default.
- W3093564170 hasConcept C94625758 @default.
- W3093564170 hasConcept C99498987 @default.
- W3093564170 hasConceptScore W3093564170C115961682 @default.
- W3093564170 hasConceptScore W3093564170C138885662 @default.
- W3093564170 hasConceptScore W3093564170C153180895 @default.
- W3093564170 hasConceptScore W3093564170C154945302 @default.
- W3093564170 hasConceptScore W3093564170C163294075 @default.
- W3093564170 hasConceptScore W3093564170C17744445 @default.
- W3093564170 hasConceptScore W3093564170C199539241 @default.
- W3093564170 hasConceptScore W3093564170C2776359362 @default.
- W3093564170 hasConceptScore W3093564170C2776401178 @default.
- W3093564170 hasConceptScore W3093564170C41008148 @default.
- W3093564170 hasConceptScore W3093564170C41895202 @default.
- W3093564170 hasConceptScore W3093564170C52622490 @default.
- W3093564170 hasConceptScore W3093564170C59404180 @default.
- W3093564170 hasConceptScore W3093564170C73555534 @default.
- W3093564170 hasConceptScore W3093564170C8038995 @default.
- W3093564170 hasConceptScore W3093564170C94625758 @default.
- W3093564170 hasConceptScore W3093564170C99498987 @default.
- W3093564170 hasLocation W30935641701 @default.
- W3093564170 hasOpenAccess W3093564170 @default.
- W3093564170 hasPrimaryLocation W30935641701 @default.
- W3093564170 hasRelatedWork W10202958 @default.
- W3093564170 hasRelatedWork W12239746 @default.
- W3093564170 hasRelatedWork W13187899 @default.
- W3093564170 hasRelatedWork W4090223 @default.
- W3093564170 hasRelatedWork W6468916 @default.
- W3093564170 hasRelatedWork W6901147 @default.
- W3093564170 hasRelatedWork W8597964 @default.
- W3093564170 hasRelatedWork W9362070 @default.
- W3093564170 hasRelatedWork W9402503 @default.
- W3093564170 hasRelatedWork W9770290 @default.
- W3093564170 isParatext "false" @default.
- W3093564170 isRetracted "false" @default.
- W3093564170 magId "3093564170" @default.
- W3093564170 workType "article" @default.