Matches in SemOpenAlex for { <https://semopenalex.org/work/W3093669074> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W3093669074 endingPage "e0241200" @default.
- W3093669074 startingPage "e0241200" @default.
- W3093669074 abstract "Quantification of phenotypic heterogeneity present amongst bacterial cells can be a challenging task. Conventionally, classification and counting of bacteria sub-populations is achieved with manual microscopy, due to the lack of alternative, high-throughput, autonomous approaches. In this work, we apply classification-type convolutional neural networks (cCNN) to classify and enumerate bacterial cell sub-populations (B. subtilis clusters). Here, we demonstrate that the accuracy of the cCNN developed in this study can be as high as 86% when trained on a relatively small dataset (81 images). We also developed a new image preprocessing algorithm, specific to fluorescent microscope images, which increases the amount of training data available for the neural network by 72 times. By summing the classified cells together, the algorithm provides a total cell count which is on parity with manual counting, but is 10.2 times more consistent and 3.8 times faster. Finally, this work presents a complete solution framework for those wishing to learn and implement cCNN in their synthetic biology work." @default.
- W3093669074 created "2020-10-29" @default.
- W3093669074 creator A5006867886 @default.
- W3093669074 creator A5014291828 @default.
- W3093669074 creator A5085604733 @default.
- W3093669074 date "2020-10-26" @default.
- W3093669074 modified "2023-10-18" @default.
- W3093669074 title "Automated classification of bacterial cell sub-populations with convolutional neural networks" @default.
- W3093669074 cites W1506286154 @default.
- W3093669074 cites W1861492603 @default.
- W3093669074 cites W2006006524 @default.
- W3093669074 cites W2099355395 @default.
- W3093669074 cites W2106197721 @default.
- W3093669074 cites W2112796928 @default.
- W3093669074 cites W2117539524 @default.
- W3093669074 cites W2139427956 @default.
- W3093669074 cites W2147800946 @default.
- W3093669074 cites W2467496703 @default.
- W3093669074 cites W2519965060 @default.
- W3093669074 cites W2596272360 @default.
- W3093669074 cites W2622826443 @default.
- W3093669074 cites W2810252832 @default.
- W3093669074 cites W2889302184 @default.
- W3093669074 cites W2896790556 @default.
- W3093669074 cites W2922268597 @default.
- W3093669074 cites W2950831881 @default.
- W3093669074 cites W2954996726 @default.
- W3093669074 cites W2971938305 @default.
- W3093669074 cites W2989837443 @default.
- W3093669074 cites W3022790683 @default.
- W3093669074 cites W3023844560 @default.
- W3093669074 cites W3030200736 @default.
- W3093669074 doi "https://doi.org/10.1371/journal.pone.0241200" @default.
- W3093669074 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7588061" @default.
- W3093669074 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33104721" @default.
- W3093669074 hasPublicationYear "2020" @default.
- W3093669074 type Work @default.
- W3093669074 sameAs 3093669074 @default.
- W3093669074 citedByCount "9" @default.
- W3093669074 countsByYear W30936690742021 @default.
- W3093669074 countsByYear W30936690742022 @default.
- W3093669074 countsByYear W30936690742023 @default.
- W3093669074 crossrefType "journal-article" @default.
- W3093669074 hasAuthorship W3093669074A5006867886 @default.
- W3093669074 hasAuthorship W3093669074A5014291828 @default.
- W3093669074 hasAuthorship W3093669074A5085604733 @default.
- W3093669074 hasBestOaLocation W30936690741 @default.
- W3093669074 hasConcept C154945302 @default.
- W3093669074 hasConcept C41008148 @default.
- W3093669074 hasConcept C70721500 @default.
- W3093669074 hasConcept C81363708 @default.
- W3093669074 hasConcept C86803240 @default.
- W3093669074 hasConceptScore W3093669074C154945302 @default.
- W3093669074 hasConceptScore W3093669074C41008148 @default.
- W3093669074 hasConceptScore W3093669074C70721500 @default.
- W3093669074 hasConceptScore W3093669074C81363708 @default.
- W3093669074 hasConceptScore W3093669074C86803240 @default.
- W3093669074 hasIssue "10" @default.
- W3093669074 hasLocation W30936690741 @default.
- W3093669074 hasLocation W30936690742 @default.
- W3093669074 hasLocation W30936690743 @default.
- W3093669074 hasLocation W30936690744 @default.
- W3093669074 hasOpenAccess W3093669074 @default.
- W3093669074 hasPrimaryLocation W30936690741 @default.
- W3093669074 hasRelatedWork W2285788670 @default.
- W3093669074 hasRelatedWork W2521062615 @default.
- W3093669074 hasRelatedWork W2735477435 @default.
- W3093669074 hasRelatedWork W2749468216 @default.
- W3093669074 hasRelatedWork W2901465038 @default.
- W3093669074 hasRelatedWork W2998526951 @default.
- W3093669074 hasRelatedWork W3090822330 @default.
- W3093669074 hasRelatedWork W3119610945 @default.
- W3093669074 hasRelatedWork W3181746755 @default.
- W3093669074 hasRelatedWork W4239686595 @default.
- W3093669074 hasVolume "15" @default.
- W3093669074 isParatext "false" @default.
- W3093669074 isRetracted "false" @default.
- W3093669074 magId "3093669074" @default.
- W3093669074 workType "article" @default.