Matches in SemOpenAlex for { <https://semopenalex.org/work/W3093700265> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W3093700265 abstract "This thesis deals with the problem of Automatic Music Transcription (AMT), which aims to extract the pitch and timing information from recorded music signals. AMT is a challenging problem that is closely related to source separation and sparse mod- eling. Many approaches use latent variable models where the goal is to extract the underlying explanatory factors (musical pitches) which best explain the signal in question. A fundamental technique is the Nonnegative Matrix Factorization (NMF) algorithm which seeks to decompose the signal into a linear combination of nonneg- ative templates. However, NMF fails to account for the structure of music signals such as time smoothness.We introduce extensions of NMF to more accurately model music signals. The motivating assumption is that good transcriptions tend to have a low-rank structure, which when taken into account can improve the transcription performance.First, we extend classical NMF to a Low-Rank NMF model, based on work in low- rank matrix completion. We explore the connection between optimization of the matrix nuclear norm and proximal algorithms to derive a model that results in low- rank transcriptions. The nuclear norm approach is then extended to non-convex penalties which more accurately reflect the desired low-rank assumption.Next, we extend these ideas to deal with models in which the resulting transcription is locally low-rank, which we argue is a better model of music signals. An algorithm based on NMF and submodular function optimization is introduced, which learns a collection of local models. It is shown that this leads to further improvement for the AMT task.Finally, we develop a probabilistic framework that represents the signal using a hi- erarchy of local models. and discuss the interpretation of the proposed approaches as hard and soft clustering methods. We find that the proposed probabilistic “soft clustering” algorithm leads to further performance gains for the AMT task, outper- forming comparable state-of-the-art AMT systems which are based on NMF." @default.
- W3093700265 created "2020-10-29" @default.
- W3093700265 creator A5054888354 @default.
- W3093700265 date "2020-07-31" @default.
- W3093700265 modified "2023-09-23" @default.
- W3093700265 title "Low rank modelling for polyphonic music analysis." @default.
- W3093700265 doi "https://doi.org/10.15126/thesis.00858084" @default.
- W3093700265 hasPublicationYear "2020" @default.
- W3093700265 type Work @default.
- W3093700265 sameAs 3093700265 @default.
- W3093700265 citedByCount "0" @default.
- W3093700265 crossrefType "dissertation" @default.
- W3093700265 hasAuthorship W3093700265A5054888354 @default.
- W3093700265 hasConcept C11413529 @default.
- W3093700265 hasConcept C114614502 @default.
- W3093700265 hasConcept C121332964 @default.
- W3093700265 hasConcept C126255220 @default.
- W3093700265 hasConcept C138885662 @default.
- W3093700265 hasConcept C152671427 @default.
- W3093700265 hasConcept C154945302 @default.
- W3093700265 hasConcept C158693339 @default.
- W3093700265 hasConcept C163716315 @default.
- W3093700265 hasConcept C164226766 @default.
- W3093700265 hasConcept C178621042 @default.
- W3093700265 hasConcept C179926584 @default.
- W3093700265 hasConcept C2778459887 @default.
- W3093700265 hasConcept C28490314 @default.
- W3093700265 hasConcept C33923547 @default.
- W3093700265 hasConcept C41008148 @default.
- W3093700265 hasConcept C41895202 @default.
- W3093700265 hasConcept C42355184 @default.
- W3093700265 hasConcept C62520636 @default.
- W3093700265 hasConcept C92207270 @default.
- W3093700265 hasConceptScore W3093700265C11413529 @default.
- W3093700265 hasConceptScore W3093700265C114614502 @default.
- W3093700265 hasConceptScore W3093700265C121332964 @default.
- W3093700265 hasConceptScore W3093700265C126255220 @default.
- W3093700265 hasConceptScore W3093700265C138885662 @default.
- W3093700265 hasConceptScore W3093700265C152671427 @default.
- W3093700265 hasConceptScore W3093700265C154945302 @default.
- W3093700265 hasConceptScore W3093700265C158693339 @default.
- W3093700265 hasConceptScore W3093700265C163716315 @default.
- W3093700265 hasConceptScore W3093700265C164226766 @default.
- W3093700265 hasConceptScore W3093700265C178621042 @default.
- W3093700265 hasConceptScore W3093700265C179926584 @default.
- W3093700265 hasConceptScore W3093700265C2778459887 @default.
- W3093700265 hasConceptScore W3093700265C28490314 @default.
- W3093700265 hasConceptScore W3093700265C33923547 @default.
- W3093700265 hasConceptScore W3093700265C41008148 @default.
- W3093700265 hasConceptScore W3093700265C41895202 @default.
- W3093700265 hasConceptScore W3093700265C42355184 @default.
- W3093700265 hasConceptScore W3093700265C62520636 @default.
- W3093700265 hasConceptScore W3093700265C92207270 @default.
- W3093700265 hasLocation W30937002651 @default.
- W3093700265 hasOpenAccess W3093700265 @default.
- W3093700265 hasPrimaryLocation W30937002651 @default.
- W3093700265 hasRelatedWork W1495279923 @default.
- W3093700265 hasRelatedWork W1745685099 @default.
- W3093700265 hasRelatedWork W202196065 @default.
- W3093700265 hasRelatedWork W2063365576 @default.
- W3093700265 hasRelatedWork W2128521126 @default.
- W3093700265 hasRelatedWork W2396376630 @default.
- W3093700265 hasRelatedWork W2528414367 @default.
- W3093700265 hasRelatedWork W2549726308 @default.
- W3093700265 hasRelatedWork W2745360392 @default.
- W3093700265 hasRelatedWork W2784269545 @default.
- W3093700265 hasRelatedWork W2790768747 @default.
- W3093700265 hasRelatedWork W2887421917 @default.
- W3093700265 hasRelatedWork W2892240940 @default.
- W3093700265 hasRelatedWork W2899274836 @default.
- W3093700265 hasRelatedWork W2905670643 @default.
- W3093700265 hasRelatedWork W2952802231 @default.
- W3093700265 hasRelatedWork W2963296463 @default.
- W3093700265 hasRelatedWork W3002752685 @default.
- W3093700265 hasRelatedWork W3196739044 @default.
- W3093700265 hasRelatedWork W3201579969 @default.
- W3093700265 isParatext "false" @default.
- W3093700265 isRetracted "false" @default.
- W3093700265 magId "3093700265" @default.
- W3093700265 workType "dissertation" @default.