Matches in SemOpenAlex for { <https://semopenalex.org/work/W3093717841> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W3093717841 endingPage "1367" @default.
- W3093717841 startingPage "1364" @default.
- W3093717841 abstract "Emotion recognition is actively used in brain–computer interface, health care, security, e-commerce, education and entertainment applications to increase and control human–machine interaction. Therefore, emotions affect people's lives and decision-making mechanisms throughout their lives. However, the fact that emotions vary from person to person, being an abstract concept and being dependent on internal and external factors makes the studies in this field difficult. In recent years, studies based on electroencephalography (EEG) signals, which perform emotion analysis in a more robust and reliable way, have gained momentum. In this article, emotion analysis based on EEG signals was performed to predict positive and negative emotions. The study consists of four parts. In the first part, EEG signals were obtained from the GAMEEMO data set. In the second stage, the spectral entropy values of the EEG signals of all channels were calculated and these values were classified by the bidirectional long-short term memory architecture in the third stage. In the last stage, the performance of the deep-learning architecture was evaluated with accuracy, sensitivity, specificity and receiver operating characteristic (ROC) curve. With the proposed method, an accuracy of 76.91% and a ROC value of 90% were obtained." @default.
- W3093717841 created "2020-10-29" @default.
- W3093717841 creator A5029567697 @default.
- W3093717841 creator A5047460567 @default.
- W3093717841 date "2020-10-22" @default.
- W3093717841 modified "2023-10-16" @default.
- W3093717841 title "Emotion recognition with deep learning using GAMEEMO data set" @default.
- W3093717841 cites W1566256432 @default.
- W3093717841 cites W1973373700 @default.
- W3093717841 cites W1980276147 @default.
- W3093717841 cites W2015703218 @default.
- W3093717841 cites W2034394212 @default.
- W3093717841 cites W2077532788 @default.
- W3093717841 cites W2110242546 @default.
- W3093717841 cites W2134031328 @default.
- W3093717841 cites W2165611870 @default.
- W3093717841 cites W2396076036 @default.
- W3093717841 cites W2556157077 @default.
- W3093717841 cites W2564960719 @default.
- W3093717841 cites W2606226674 @default.
- W3093717841 cites W2765856398 @default.
- W3093717841 cites W2970878533 @default.
- W3093717841 cites W2971724044 @default.
- W3093717841 cites W2985653130 @default.
- W3093717841 cites W3017231556 @default.
- W3093717841 doi "https://doi.org/10.1049/el.2020.2460" @default.
- W3093717841 hasPublicationYear "2020" @default.
- W3093717841 type Work @default.
- W3093717841 sameAs 3093717841 @default.
- W3093717841 citedByCount "12" @default.
- W3093717841 countsByYear W30937178412021 @default.
- W3093717841 countsByYear W30937178412022 @default.
- W3093717841 countsByYear W30937178412023 @default.
- W3093717841 crossrefType "journal-article" @default.
- W3093717841 hasAuthorship W3093717841A5029567697 @default.
- W3093717841 hasAuthorship W3093717841A5047460567 @default.
- W3093717841 hasBestOaLocation W30937178412 @default.
- W3093717841 hasConcept C106301342 @default.
- W3093717841 hasConcept C118552586 @default.
- W3093717841 hasConcept C119857082 @default.
- W3093717841 hasConcept C121332964 @default.
- W3093717841 hasConcept C127413603 @default.
- W3093717841 hasConcept C153180895 @default.
- W3093717841 hasConcept C154945302 @default.
- W3093717841 hasConcept C15744967 @default.
- W3093717841 hasConcept C177264268 @default.
- W3093717841 hasConcept C199360897 @default.
- W3093717841 hasConcept C21200559 @default.
- W3093717841 hasConcept C24326235 @default.
- W3093717841 hasConcept C28490314 @default.
- W3093717841 hasConcept C41008148 @default.
- W3093717841 hasConcept C522805319 @default.
- W3093717841 hasConcept C58471807 @default.
- W3093717841 hasConcept C62520636 @default.
- W3093717841 hasConceptScore W3093717841C106301342 @default.
- W3093717841 hasConceptScore W3093717841C118552586 @default.
- W3093717841 hasConceptScore W3093717841C119857082 @default.
- W3093717841 hasConceptScore W3093717841C121332964 @default.
- W3093717841 hasConceptScore W3093717841C127413603 @default.
- W3093717841 hasConceptScore W3093717841C153180895 @default.
- W3093717841 hasConceptScore W3093717841C154945302 @default.
- W3093717841 hasConceptScore W3093717841C15744967 @default.
- W3093717841 hasConceptScore W3093717841C177264268 @default.
- W3093717841 hasConceptScore W3093717841C199360897 @default.
- W3093717841 hasConceptScore W3093717841C21200559 @default.
- W3093717841 hasConceptScore W3093717841C24326235 @default.
- W3093717841 hasConceptScore W3093717841C28490314 @default.
- W3093717841 hasConceptScore W3093717841C41008148 @default.
- W3093717841 hasConceptScore W3093717841C522805319 @default.
- W3093717841 hasConceptScore W3093717841C58471807 @default.
- W3093717841 hasConceptScore W3093717841C62520636 @default.
- W3093717841 hasIssue "25" @default.
- W3093717841 hasLocation W30937178411 @default.
- W3093717841 hasLocation W30937178412 @default.
- W3093717841 hasOpenAccess W3093717841 @default.
- W3093717841 hasPrimaryLocation W30937178411 @default.
- W3093717841 hasRelatedWork W2748952813 @default.
- W3093717841 hasRelatedWork W2899084033 @default.
- W3093717841 hasRelatedWork W2961085424 @default.
- W3093717841 hasRelatedWork W3046775127 @default.
- W3093717841 hasRelatedWork W3170094116 @default.
- W3093717841 hasRelatedWork W4285260836 @default.
- W3093717841 hasRelatedWork W4286629047 @default.
- W3093717841 hasRelatedWork W4306321456 @default.
- W3093717841 hasRelatedWork W4306674287 @default.
- W3093717841 hasRelatedWork W4224009465 @default.
- W3093717841 hasVolume "56" @default.
- W3093717841 isParatext "false" @default.
- W3093717841 isRetracted "false" @default.
- W3093717841 magId "3093717841" @default.
- W3093717841 workType "article" @default.