Matches in SemOpenAlex for { <https://semopenalex.org/work/W3093852296> ?p ?o ?g. }
- W3093852296 endingPage "158" @default.
- W3093852296 startingPage "133" @default.
- W3093852296 abstract "Fluid inclusion and metal-ratio data have been compiled for 52 low-sulfidation precious metal and base metal-rich low-sulfidation epithermal deposits in Mexico. Precious metal deposits typically have inclusion salinities that range from 0 to 7.5 wt percent NaCl equiv, whereas base metal-rich deposits have salinities that are as high as 23 wt percent NaCl equiv. Salinities are typically high in fluids included in sphalerite, suggesting a genetic relationship between base metal mineralization and saline fluids. Silver/gold and Ag + Au/Pb + Zn + Cu ratios correlate with fluid inclusion salinity, a relationship that underscores the importance of chloride complexing in base metal transport and polymetallic mineralization.Fluid inclusion gas chemistry of 21 low-sulfidation epithermal deposits plotted on N2-Ar-He and N2-Ar-CH4 diagrams indicate that meteoric, mantle or evolved crustal, and magmatic fluids were present in the ore-forming hydrothermal systems, although in different proportions in individual deposits. The N2/Ar ratios of sulfide mineral fluid inclusions are all higher than that of air-saturated water, indicating a mag-matic source, whereas a significant proportion of inclusions in barren gangue minerals have N2/Ar ratios near that of air-saturated water. Plots of N2/Ar vs. H2S/Ar show a correlation between N2 and H2S concentrations. The data suggest that low-sulfidation epithermal deposits in Mexico comprise both meteoric waters and magmatic waters, with a significant contribution of H2S of magmatic origin.New oxygen and hydrogen isotope data are presented for seven deposits. Fluids responsible for precious metal and base metal deposition contain consistently heavy oxygen isotope signatures and shifts as high as +10 to +20 per mil from the meteoric water line, regardless of host rock type. Boiling and/or water-rock interaction processes alone cannot explain adequately the consistently heavy oxygen isotope signatures of Mexican low-sulfidation deposits. Rather, these results are best accounted for by a significant contribution of magmatic waters to the deep fluid, subsequently modified by water-rock interaction, boiling, and mixing with meteoric water.A classification of low-sulfidation deposits of Mexico is presented based on depth of formation and whether or not boiling is thought to have occurred in the system. Three end-member types are recognized: shallow with boiling, deep with boiling, and deep without boiling. In shallow-formed deposits boiling fluids rise to depths of <500 m below the paleowater table, and ore occupies a vertical range of a few hundred meters. In deep-formed deposits, boiling occurs at temperatures that may exceed 300°C, and ore is generally deposited between 400 and 1,000 m from the paleowater table as fluids rise within the area of liquid-vapor immiscibility." @default.
- W3093852296 created "2020-10-29" @default.
- W3093852296 creator A5038008007 @default.
- W3093852296 creator A5044963471 @default.
- W3093852296 creator A5078563482 @default.
- W3093852296 creator A5086364474 @default.
- W3093852296 creator A5091871888 @default.
- W3093852296 date "2001-01-01" @default.
- W3093852296 modified "2023-09-25" @default.
- W3093852296 title "The La Guitarra Ag-Au Low-Sulfidation Epithermal Deposit, Temascaltepec District, Mexico" @default.
- W3093852296 cites W1568085078 @default.
- W3093852296 cites W1965617167 @default.
- W3093852296 cites W1981358686 @default.
- W3093852296 cites W1991608029 @default.
- W3093852296 cites W1995556622 @default.
- W3093852296 cites W1995657303 @default.
- W3093852296 cites W1997711002 @default.
- W3093852296 cites W2006477561 @default.
- W3093852296 cites W2017022006 @default.
- W3093852296 cites W2018877747 @default.
- W3093852296 cites W2024465315 @default.
- W3093852296 cites W2025693730 @default.
- W3093852296 cites W2030328000 @default.
- W3093852296 cites W2030964036 @default.
- W3093852296 cites W2040179905 @default.
- W3093852296 cites W2044534301 @default.
- W3093852296 cites W2050444146 @default.
- W3093852296 cites W2059907493 @default.
- W3093852296 cites W2065810623 @default.
- W3093852296 cites W2067654075 @default.
- W3093852296 cites W2073919886 @default.
- W3093852296 cites W2074139688 @default.
- W3093852296 cites W2082089222 @default.
- W3093852296 cites W2088522209 @default.
- W3093852296 cites W2096037177 @default.
- W3093852296 cites W2100147296 @default.
- W3093852296 cites W2105599423 @default.
- W3093852296 cites W2122046916 @default.
- W3093852296 cites W2123935112 @default.
- W3093852296 cites W2125483294 @default.
- W3093852296 cites W2129483939 @default.
- W3093852296 cites W2143650526 @default.
- W3093852296 cites W2161407747 @default.
- W3093852296 cites W2167240611 @default.
- W3093852296 cites W2168109178 @default.
- W3093852296 cites W2325948779 @default.
- W3093852296 cites W2339924103 @default.
- W3093852296 cites W2522224236 @default.
- W3093852296 cites W3170538108 @default.
- W3093852296 cites W4239832365 @default.
- W3093852296 cites W4240284175 @default.
- W3093852296 cites W4297677661 @default.
- W3093852296 cites W2036470077 @default.
- W3093852296 doi "https://doi.org/10.5382/sp.08.10" @default.
- W3093852296 hasPublicationYear "2001" @default.
- W3093852296 type Work @default.
- W3093852296 sameAs 3093852296 @default.
- W3093852296 citedByCount "7" @default.
- W3093852296 countsByYear W30938522962013 @default.
- W3093852296 countsByYear W30938522962015 @default.
- W3093852296 countsByYear W30938522962023 @default.
- W3093852296 crossrefType "book-chapter" @default.
- W3093852296 hasAuthorship W3093852296A5038008007 @default.
- W3093852296 hasAuthorship W3093852296A5044963471 @default.
- W3093852296 hasAuthorship W3093852296A5078563482 @default.
- W3093852296 hasAuthorship W3093852296A5086364474 @default.
- W3093852296 hasAuthorship W3093852296A5091871888 @default.
- W3093852296 hasConcept C111696902 @default.
- W3093852296 hasConcept C127313418 @default.
- W3093852296 hasConcept C156622251 @default.
- W3093852296 hasConcept C159390177 @default.
- W3093852296 hasConcept C159750122 @default.
- W3093852296 hasConcept C165205528 @default.
- W3093852296 hasConcept C17409809 @default.
- W3093852296 hasConcept C191897082 @default.
- W3093852296 hasConcept C192562407 @default.
- W3093852296 hasConcept C19474535 @default.
- W3093852296 hasConcept C199289684 @default.
- W3093852296 hasConcept C2776062231 @default.
- W3093852296 hasConcept C2776152364 @default.
- W3093852296 hasConcept C2776268066 @default.
- W3093852296 hasConcept C2778480967 @default.
- W3093852296 hasConcept C2780596425 @default.
- W3093852296 hasConcept C40241539 @default.
- W3093852296 hasConcept C518881349 @default.
- W3093852296 hasConcept C92720285 @default.
- W3093852296 hasConceptScore W3093852296C111696902 @default.
- W3093852296 hasConceptScore W3093852296C127313418 @default.
- W3093852296 hasConceptScore W3093852296C156622251 @default.
- W3093852296 hasConceptScore W3093852296C159390177 @default.
- W3093852296 hasConceptScore W3093852296C159750122 @default.
- W3093852296 hasConceptScore W3093852296C165205528 @default.
- W3093852296 hasConceptScore W3093852296C17409809 @default.
- W3093852296 hasConceptScore W3093852296C191897082 @default.
- W3093852296 hasConceptScore W3093852296C192562407 @default.
- W3093852296 hasConceptScore W3093852296C19474535 @default.
- W3093852296 hasConceptScore W3093852296C199289684 @default.
- W3093852296 hasConceptScore W3093852296C2776062231 @default.