Matches in SemOpenAlex for { <https://semopenalex.org/work/W3093886153> ?p ?o ?g. }
- W3093886153 endingPage "1938" @default.
- W3093886153 startingPage "1928" @default.
- W3093886153 abstract "Rotary ultrasonic machining (RUM) is a superior technology to machine hard and brittle materials. Traditionally, the compensation optimization for the RUM system is limited to a single resonant frequency. This article presents a novel double compensation approach for the impedance and frequency regulations of RUM via multiobjective genetic algorithm (MOGA) aiming to achieve the system resonance and monitor the machining process in real time. For this, we first establish the impedance model of the rotary ultrasonic holder (RUH) by adopting the T-type circuit that includes the comprehensive electromagnetic parameters. The obtained impedance model reveals that both frequency mismatch and impedance mismatch exist in the RUM system, causing the low voltage gain and low vibration transmission. To obtain the optimal compensation to match both the frequency and impedance, an optimization model-based MOGA is developed to intelligently search the accurate capacitance values, where the Pareto frontier is employed to visualize the capacitance solution distribution. Moreover, the response feature of the RUH system is attained by using the state-space equation. Detailed comparisons of four compensation topologies show that the series–series (SS) topology offers the optimal performance, which can match both of the frequency and the impedance well, improving the output active power 7.634 times compared to the conventional one. Finally, the validity of the proposed optimization method is confirmed by using both simulations and experiments. <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>Note to Practitioners</i> —This article was motivated by the transmission efficiency and the stability of ultrasonic vibration in the rotary ultrasonic machining (RUM). The matching issue is critical in RUM because the whole system is very complicated with multiple components such as electrical devices, piezoelectric rings, and mechanical horn. In the conventional RUM, the system matching is limited to a single resonant frequency between the piezoelectric transducer and the electrical driver. However, the impedance matching is also important to influence the ultrasonic vibration. The problem of the ultrasonic matching stems from empirical experiences of the engineers’ or simple heuristic rules instead of advanced approaches. On the other hand, optimization-based techniques are viewed as a great success in industrial and engineering applications. With the assistance of our proposed numerical model and the corresponding simulation, we found that the multiobjective genetic algorithm (MOGA) can intelligently search the optimal compensated parameters to achieve the double matching for both the resonant frequency and the impedance in the RUM system. Finally, our experiments prove that the MOGA optimization can attain optimal transmission efficiency for the electrical voltage and current compared with conventional approaches. This significantly benefits the application of the RUM technology in industry, especially for the precision machining of the hard and brittle materials." @default.
- W3093886153 created "2020-10-29" @default.
- W3093886153 creator A5013848908 @default.
- W3093886153 creator A5027712402 @default.
- W3093886153 creator A5032545822 @default.
- W3093886153 creator A5056975635 @default.
- W3093886153 creator A5082213914 @default.
- W3093886153 date "2021-10-01" @default.
- W3093886153 modified "2023-10-14" @default.
- W3093886153 title "Novel Double Compensation for Impedance–Frequency Characteristics of Rotary Ultrasonic Machining via Multiobjective Genetic Algorithm" @default.
- W3093886153 cites W1567834739 @default.
- W3093886153 cites W1964250478 @default.
- W3093886153 cites W1976866796 @default.
- W3093886153 cites W1977855111 @default.
- W3093886153 cites W1999430248 @default.
- W3093886153 cites W2002591382 @default.
- W3093886153 cites W2013143508 @default.
- W3093886153 cites W2026753114 @default.
- W3093886153 cites W2030184804 @default.
- W3093886153 cites W2056191156 @default.
- W3093886153 cites W2062197138 @default.
- W3093886153 cites W2064198940 @default.
- W3093886153 cites W2085971358 @default.
- W3093886153 cites W2092198576 @default.
- W3093886153 cites W2092909525 @default.
- W3093886153 cites W2103384937 @default.
- W3093886153 cites W2126105956 @default.
- W3093886153 cites W2131561725 @default.
- W3093886153 cites W2145501206 @default.
- W3093886153 cites W2199047370 @default.
- W3093886153 cites W2296231858 @default.
- W3093886153 cites W2301141083 @default.
- W3093886153 cites W2502277024 @default.
- W3093886153 cites W2535254747 @default.
- W3093886153 cites W2560956574 @default.
- W3093886153 cites W2562300772 @default.
- W3093886153 cites W2605430221 @default.
- W3093886153 cites W2609358921 @default.
- W3093886153 cites W2747824414 @default.
- W3093886153 cites W2763637113 @default.
- W3093886153 cites W2772186533 @default.
- W3093886153 cites W2772849459 @default.
- W3093886153 cites W2804876654 @default.
- W3093886153 cites W2911864001 @default.
- W3093886153 cites W2912805917 @default.
- W3093886153 cites W2917903341 @default.
- W3093886153 cites W2923500577 @default.
- W3093886153 cites W2994988056 @default.
- W3093886153 cites W391758266 @default.
- W3093886153 cites W621092471 @default.
- W3093886153 doi "https://doi.org/10.1109/tase.2020.3026317" @default.
- W3093886153 hasPublicationYear "2021" @default.
- W3093886153 type Work @default.
- W3093886153 sameAs 3093886153 @default.
- W3093886153 citedByCount "5" @default.
- W3093886153 countsByYear W30938861532022 @default.
- W3093886153 countsByYear W30938861532023 @default.
- W3093886153 crossrefType "journal-article" @default.
- W3093886153 hasAuthorship W3093886153A5013848908 @default.
- W3093886153 hasAuthorship W3093886153A5027712402 @default.
- W3093886153 hasAuthorship W3093886153A5032545822 @default.
- W3093886153 hasAuthorship W3093886153A5056975635 @default.
- W3093886153 hasAuthorship W3093886153A5082213914 @default.
- W3093886153 hasConcept C11171543 @default.
- W3093886153 hasConcept C119599485 @default.
- W3093886153 hasConcept C119857082 @default.
- W3093886153 hasConcept C121332964 @default.
- W3093886153 hasConcept C127413603 @default.
- W3093886153 hasConcept C154945302 @default.
- W3093886153 hasConcept C15744967 @default.
- W3093886153 hasConcept C17525397 @default.
- W3093886153 hasConcept C17829176 @default.
- W3093886153 hasConcept C24326235 @default.
- W3093886153 hasConcept C2775924081 @default.
- W3093886153 hasConcept C2780023022 @default.
- W3093886153 hasConcept C2780330172 @default.
- W3093886153 hasConcept C30066665 @default.
- W3093886153 hasConcept C41008148 @default.
- W3093886153 hasConcept C47446073 @default.
- W3093886153 hasConcept C523214423 @default.
- W3093886153 hasConcept C62520636 @default.
- W3093886153 hasConcept C78519656 @default.
- W3093886153 hasConcept C8880873 @default.
- W3093886153 hasConceptScore W3093886153C11171543 @default.
- W3093886153 hasConceptScore W3093886153C119599485 @default.
- W3093886153 hasConceptScore W3093886153C119857082 @default.
- W3093886153 hasConceptScore W3093886153C121332964 @default.
- W3093886153 hasConceptScore W3093886153C127413603 @default.
- W3093886153 hasConceptScore W3093886153C154945302 @default.
- W3093886153 hasConceptScore W3093886153C15744967 @default.
- W3093886153 hasConceptScore W3093886153C17525397 @default.
- W3093886153 hasConceptScore W3093886153C17829176 @default.
- W3093886153 hasConceptScore W3093886153C24326235 @default.
- W3093886153 hasConceptScore W3093886153C2775924081 @default.
- W3093886153 hasConceptScore W3093886153C2780023022 @default.
- W3093886153 hasConceptScore W3093886153C2780330172 @default.
- W3093886153 hasConceptScore W3093886153C30066665 @default.
- W3093886153 hasConceptScore W3093886153C41008148 @default.