Matches in SemOpenAlex for { <https://semopenalex.org/work/W3093886169> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W3093886169 abstract "Summary Probabilistic approaches for optimization objectives need a large ensemble size to consider uncertainties, which is often computationally expensive. Our proposed method includes two scenario reduction (SR) techniques applied to geostatistical realizations and reservoir simulation models to handle geological and dynamic uncertainties. The goal is to select a subset of simulation models to be used in an efficient robust optimization (RO). The proposed workflow is summarized in the following sections. Generate total geostatistical (TG) realizations representing grid properties using Latin Hypercube (LH) sampling; Select representative geostatistical (RG) realizations from the TG realizations using an integrated statistical technique named Distance-based Clustering with Simple Matching Coefficient (DCSMC). This section is the first stage of SR; Integrate other uncertainties with the RG scenarios to generate total simulation (TS) models using Discrete Latin Hypercube with Geostatistical models (DLHG); Apply data assimilation process to reduce uncertainty and generate total history-matched simulation (THS) models using a filtering indicator named Normalized Quadratic Deviation with Signal (NQDS); Select representative history-matched simulation (RHS) models from the THS models set using a tool based on a metaheuristic optimization algorithm named RMFinder. This section is the second stage of SR; Perform an RO to maximize NPV as the objective function using the selected RHS models; The novel SR workflow selects the representative scenarios (RG realizations and RHS models) during two steps: (1) RG selection based on static features before the simulation process and, (2) RHS selection based on simulation-based (dynamic) features after the simulation process. The workflow is applied to a fractured synthetic reservoir model named the UNISIM-II-D flow unit-based. To check the computational-time and efficiency of the methodology, we compare two candidate production strategies based on (1) five RHS models obtained from the two-stage SR process considering DCSMC and RMFinder techniques (workflow A), and (2) five RHS models obtained from one-stage SR process using the RMFinder method (workflow B). In workflow A, the SR process is performed gradually during two steps while in workflow B, the SR process is applied all at once in one step. The results show that the distribution of simulation outcomes after RO for the representative scenarios and the total scenarios in workflow A are more similar than workflow B. In addition, the robust production strategy obtained from workflow A is preferred to workflow B because it presents higher chances of high NPV value and lower chances of low NPV value." @default.
- W3093886169 created "2020-10-29" @default.
- W3093886169 creator A5018367231 @default.
- W3093886169 creator A5052275743 @default.
- W3093886169 creator A5054870315 @default.
- W3093886169 creator A5061153358 @default.
- W3093886169 date "2020-01-01" @default.
- W3093886169 modified "2023-09-27" @default.
- W3093886169 title "Two-Stage Scenario Reduction Process for An Efficient Robust Optimization" @default.
- W3093886169 cites W1145798041 @default.
- W3093886169 cites W1802249127 @default.
- W3093886169 cites W1995472986 @default.
- W3093886169 cites W2022658703 @default.
- W3093886169 cites W2023632033 @default.
- W3093886169 cites W2023933213 @default.
- W3093886169 cites W2031698258 @default.
- W3093886169 cites W2046357830 @default.
- W3093886169 cites W2051186637 @default.
- W3093886169 cites W2065535460 @default.
- W3093886169 cites W2090514254 @default.
- W3093886169 cites W2092048099 @default.
- W3093886169 cites W2157164625 @default.
- W3093886169 cites W2178026321 @default.
- W3093886169 cites W2293818193 @default.
- W3093886169 cites W2331578319 @default.
- W3093886169 cites W2360351561 @default.
- W3093886169 cites W2408587800 @default.
- W3093886169 cites W2409627986 @default.
- W3093886169 cites W2501781403 @default.
- W3093886169 cites W2509862167 @default.
- W3093886169 cites W2605354090 @default.
- W3093886169 cites W2766800875 @default.
- W3093886169 cites W2793497927 @default.
- W3093886169 cites W2883612320 @default.
- W3093886169 cites W2895293494 @default.
- W3093886169 cites W2905862174 @default.
- W3093886169 cites W2916550129 @default.
- W3093886169 cites W2945431341 @default.
- W3093886169 cites W2946125750 @default.
- W3093886169 cites W2971312699 @default.
- W3093886169 cites W2996219772 @default.
- W3093886169 cites W3008134421 @default.
- W3093886169 cites W2046681096 @default.
- W3093886169 doi "https://doi.org/10.3997/2214-4609.202035105" @default.
- W3093886169 hasPublicationYear "2020" @default.
- W3093886169 type Work @default.
- W3093886169 sameAs 3093886169 @default.
- W3093886169 citedByCount "2" @default.
- W3093886169 countsByYear W30938861692021 @default.
- W3093886169 crossrefType "proceedings-article" @default.
- W3093886169 hasAuthorship W3093886169A5018367231 @default.
- W3093886169 hasAuthorship W3093886169A5052275743 @default.
- W3093886169 hasAuthorship W3093886169A5054870315 @default.
- W3093886169 hasAuthorship W3093886169A5061153358 @default.
- W3093886169 hasConcept C105795698 @default.
- W3093886169 hasConcept C111335779 @default.
- W3093886169 hasConcept C11413529 @default.
- W3093886169 hasConcept C119857082 @default.
- W3093886169 hasConcept C124101348 @default.
- W3093886169 hasConcept C126255220 @default.
- W3093886169 hasConcept C177212765 @default.
- W3093886169 hasConcept C19499675 @default.
- W3093886169 hasConcept C20820323 @default.
- W3093886169 hasConcept C2524010 @default.
- W3093886169 hasConcept C33923547 @default.
- W3093886169 hasConcept C41008148 @default.
- W3093886169 hasConcept C73555534 @default.
- W3093886169 hasConcept C77088390 @default.
- W3093886169 hasConceptScore W3093886169C105795698 @default.
- W3093886169 hasConceptScore W3093886169C111335779 @default.
- W3093886169 hasConceptScore W3093886169C11413529 @default.
- W3093886169 hasConceptScore W3093886169C119857082 @default.
- W3093886169 hasConceptScore W3093886169C124101348 @default.
- W3093886169 hasConceptScore W3093886169C126255220 @default.
- W3093886169 hasConceptScore W3093886169C177212765 @default.
- W3093886169 hasConceptScore W3093886169C19499675 @default.
- W3093886169 hasConceptScore W3093886169C20820323 @default.
- W3093886169 hasConceptScore W3093886169C2524010 @default.
- W3093886169 hasConceptScore W3093886169C33923547 @default.
- W3093886169 hasConceptScore W3093886169C41008148 @default.
- W3093886169 hasConceptScore W3093886169C73555534 @default.
- W3093886169 hasConceptScore W3093886169C77088390 @default.
- W3093886169 hasLocation W30938861691 @default.
- W3093886169 hasOpenAccess W3093886169 @default.
- W3093886169 hasPrimaryLocation W30938861691 @default.
- W3093886169 hasRelatedWork W10356211 @default.
- W3093886169 hasRelatedWork W11219171 @default.
- W3093886169 hasRelatedWork W2283060 @default.
- W3093886169 hasRelatedWork W3880141 @default.
- W3093886169 hasRelatedWork W5536689 @default.
- W3093886169 hasRelatedWork W8124646 @default.
- W3093886169 hasRelatedWork W9333427 @default.
- W3093886169 hasRelatedWork W9743498 @default.
- W3093886169 hasRelatedWork W9972581 @default.
- W3093886169 hasRelatedWork W9362385 @default.
- W3093886169 isParatext "false" @default.
- W3093886169 isRetracted "false" @default.
- W3093886169 magId "3093886169" @default.
- W3093886169 workType "article" @default.