Matches in SemOpenAlex for { <https://semopenalex.org/work/W3093971821> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W3093971821 abstract "Abstract In many areas of science, the ability to use computers to process, analyze, and visualize large data sets has become essential. The mismatch between the ability to generate large data sets and the computing skill to analyze them is arguably the most striking within the life sciences. The Digital Image and Vision Applications in Science (DIVAS) project describes a scaffolded series of interventions implemented over the span of a year to build the coding and computing skill of undergraduate students majoring primarily in the natural sciences. The program is designed as a community of practice, providing support within a network of learners. The program focus, images as data, provides a compelling ‘hook’ for participating scholars. Scholars begin the program with a one-credit spring semester seminar where they are exposed to image analysis. The program continues in the summer with a one-week, intensive Python and image processing workshop. From there, scholars tackle image analysis problems using a pair programming approach and finish the summer with independent research. Finally, scholars participate in a follow-up seminar the following spring and help onramp the next cohort of incoming scholars. We observed promising growth in participant self-efficacy in computing that was maintained throughout the project as well as significant growth in key computational skills. DIVAS program funding was able to support seventeen DIVAS over three years, with 76% of DIVAS scholars identifying as women and 14% of scholars being members of an underrepresented minority group. Most scholars (82%) entered the program as freshmen, with 89% of DIVAS scholars retained for the duration of the program and 100% of scholars remaining a STEM major one year after completing the program. The outcomes of the DIVAS project support the efficacy of building computational skill through repeated exposure of scholars to relevant applications over an extended period within a community of practice." @default.
- W3093971821 created "2020-10-29" @default.
- W3093971821 creator A5046262960 @default.
- W3093971821 creator A5056060218 @default.
- W3093971821 creator A5064256730 @default.
- W3093971821 creator A5079243797 @default.
- W3093971821 creator A5022486614 @default.
- W3093971821 date "2020-10-26" @default.
- W3093971821 modified "2023-10-16" @default.
- W3093971821 title "Digital Imaging and Vision Analysis in Science Project improves the self-efficacy and skill of undergraduate students in computational work" @default.
- W3093971821 cites W1976443465 @default.
- W3093971821 cites W1982145775 @default.
- W3093971821 cites W1986663087 @default.
- W3093971821 cites W2019899368 @default.
- W3093971821 cites W2021293366 @default.
- W3093971821 cites W2023116290 @default.
- W3093971821 cites W2033026789 @default.
- W3093971821 cites W2035035690 @default.
- W3093971821 cites W2039511449 @default.
- W3093971821 cites W2048069425 @default.
- W3093971821 cites W2058819885 @default.
- W3093971821 cites W2064539099 @default.
- W3093971821 cites W2074428562 @default.
- W3093971821 cites W2133622408 @default.
- W3093971821 cites W2138701095 @default.
- W3093971821 cites W2158241905 @default.
- W3093971821 cites W2168348621 @default.
- W3093971821 cites W2339183141 @default.
- W3093971821 cites W2427476301 @default.
- W3093971821 cites W2461725782 @default.
- W3093971821 cites W2503056532 @default.
- W3093971821 cites W2511668119 @default.
- W3093971821 cites W2942325737 @default.
- W3093971821 cites W4254802762 @default.
- W3093971821 doi "https://doi.org/10.1101/2020.10.26.353987" @default.
- W3093971821 hasPublicationYear "2020" @default.
- W3093971821 type Work @default.
- W3093971821 sameAs 3093971821 @default.
- W3093971821 citedByCount "1" @default.
- W3093971821 countsByYear W30939718212023 @default.
- W3093971821 crossrefType "posted-content" @default.
- W3093971821 hasAuthorship W3093971821A5022486614 @default.
- W3093971821 hasAuthorship W3093971821A5046262960 @default.
- W3093971821 hasAuthorship W3093971821A5056060218 @default.
- W3093971821 hasAuthorship W3093971821A5064256730 @default.
- W3093971821 hasAuthorship W3093971821A5079243797 @default.
- W3093971821 hasBestOaLocation W30939718211 @default.
- W3093971821 hasConcept C145420912 @default.
- W3093971821 hasConcept C154945302 @default.
- W3093971821 hasConcept C15744967 @default.
- W3093971821 hasConcept C2780368719 @default.
- W3093971821 hasConcept C41008148 @default.
- W3093971821 hasConcept C509550671 @default.
- W3093971821 hasConcept C71924100 @default.
- W3093971821 hasConceptScore W3093971821C145420912 @default.
- W3093971821 hasConceptScore W3093971821C154945302 @default.
- W3093971821 hasConceptScore W3093971821C15744967 @default.
- W3093971821 hasConceptScore W3093971821C2780368719 @default.
- W3093971821 hasConceptScore W3093971821C41008148 @default.
- W3093971821 hasConceptScore W3093971821C509550671 @default.
- W3093971821 hasConceptScore W3093971821C71924100 @default.
- W3093971821 hasLocation W30939718211 @default.
- W3093971821 hasLocation W30939718212 @default.
- W3093971821 hasOpenAccess W3093971821 @default.
- W3093971821 hasPrimaryLocation W30939718211 @default.
- W3093971821 hasRelatedWork W2371349302 @default.
- W3093971821 hasRelatedWork W2748952813 @default.
- W3093971821 hasRelatedWork W2899084033 @default.
- W3093971821 hasRelatedWork W2905656129 @default.
- W3093971821 hasRelatedWork W3017325754 @default.
- W3093971821 hasRelatedWork W3160185362 @default.
- W3093971821 hasRelatedWork W4214837386 @default.
- W3093971821 hasRelatedWork W4230702808 @default.
- W3093971821 hasRelatedWork W4310271240 @default.
- W3093971821 hasRelatedWork W4366782572 @default.
- W3093971821 isParatext "false" @default.
- W3093971821 isRetracted "false" @default.
- W3093971821 magId "3093971821" @default.
- W3093971821 workType "article" @default.