Matches in SemOpenAlex for { <https://semopenalex.org/work/W3093984672> ?p ?o ?g. }
- W3093984672 endingPage "2647" @default.
- W3093984672 startingPage "2634" @default.
- W3093984672 abstract "Mass events represent one of the most challenging scenarios for mobile networks because, although their date and time are usually known in advance, the actual demand for resources is difficult to predict due to its dependency on many different factors. Based on data provided by a major European carrier during mass events in a football stadium comprising up to 30.000 people, 16 base station sectors and 1 Km <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sup> area, we performed a data-driven analysis of the radio access network infrastructure dynamics during such events. Given the insights obtained from the analysis, we developed ARENA, a model-free deep learning Radio Access Network (RAN) capacity forecasting solution that, taking as input past network monitoring data and events context information, provides guidance to mobile operators on the expected RAN capacity needed during a future event. Our results, validated against real events contained in the dataset, illustrate the effectiveness of our proposed solution." @default.
- W3093984672 created "2020-10-29" @default.
- W3093984672 creator A5008473850 @default.
- W3093984672 creator A5010958812 @default.
- W3093984672 creator A5051917722 @default.
- W3093984672 creator A5071187690 @default.
- W3093984672 creator A5073770360 @default.
- W3093984672 creator A5086187463 @default.
- W3093984672 date "2020-12-01" @default.
- W3093984672 modified "2023-10-16" @default.
- W3093984672 title "ARENA: A Data-Driven Radio Access Networks Analysis of Football Events" @default.
- W3093984672 cites W1966014883 @default.
- W3093984672 cites W1987861412 @default.
- W3093984672 cites W2064675550 @default.
- W3093984672 cites W2103496339 @default.
- W3093984672 cites W2148339288 @default.
- W3093984672 cites W2153757920 @default.
- W3093984672 cites W2171830216 @default.
- W3093984672 cites W2316394954 @default.
- W3093984672 cites W2478503558 @default.
- W3093984672 cites W2558600380 @default.
- W3093984672 cites W2579495707 @default.
- W3093984672 cites W2740220866 @default.
- W3093984672 cites W2762605243 @default.
- W3093984672 cites W2766609943 @default.
- W3093984672 cites W2768661886 @default.
- W3093984672 cites W2788128822 @default.
- W3093984672 cites W2809366716 @default.
- W3093984672 cites W2890072063 @default.
- W3093984672 cites W2896336465 @default.
- W3093984672 cites W2896958856 @default.
- W3093984672 cites W2902656632 @default.
- W3093984672 cites W2910790589 @default.
- W3093984672 cites W2911713224 @default.
- W3093984672 cites W2920222165 @default.
- W3093984672 cites W2950817888 @default.
- W3093984672 cites W2951825612 @default.
- W3093984672 cites W2963035276 @default.
- W3093984672 cites W2963863328 @default.
- W3093984672 cites W2969424631 @default.
- W3093984672 cites W2979922932 @default.
- W3093984672 cites W2996243818 @default.
- W3093984672 cites W3105834773 @default.
- W3093984672 cites W2739745818 @default.
- W3093984672 doi "https://doi.org/10.1109/tnsm.2020.3032829" @default.
- W3093984672 hasPublicationYear "2020" @default.
- W3093984672 type Work @default.
- W3093984672 sameAs 3093984672 @default.
- W3093984672 citedByCount "4" @default.
- W3093984672 countsByYear W30939846722020 @default.
- W3093984672 countsByYear W30939846722021 @default.
- W3093984672 countsByYear W30939846722022 @default.
- W3093984672 crossrefType "journal-article" @default.
- W3093984672 hasAuthorship W3093984672A5008473850 @default.
- W3093984672 hasAuthorship W3093984672A5010958812 @default.
- W3093984672 hasAuthorship W3093984672A5051917722 @default.
- W3093984672 hasAuthorship W3093984672A5071187690 @default.
- W3093984672 hasAuthorship W3093984672A5073770360 @default.
- W3093984672 hasAuthorship W3093984672A5086187463 @default.
- W3093984672 hasBestOaLocation W30939846721 @default.
- W3093984672 hasConcept C106365562 @default.
- W3093984672 hasConcept C121332964 @default.
- W3093984672 hasConcept C151730666 @default.
- W3093984672 hasConcept C154945302 @default.
- W3093984672 hasConcept C17744445 @default.
- W3093984672 hasConcept C19768560 @default.
- W3093984672 hasConcept C199539241 @default.
- W3093984672 hasConcept C207029474 @default.
- W3093984672 hasConcept C2524010 @default.
- W3093984672 hasConcept C2778444522 @default.
- W3093984672 hasConcept C2778539849 @default.
- W3093984672 hasConcept C2779343474 @default.
- W3093984672 hasConcept C2779662365 @default.
- W3093984672 hasConcept C31258907 @default.
- W3093984672 hasConcept C33923547 @default.
- W3093984672 hasConcept C41008148 @default.
- W3093984672 hasConcept C62520636 @default.
- W3093984672 hasConcept C68649174 @default.
- W3093984672 hasConcept C76155785 @default.
- W3093984672 hasConcept C86803240 @default.
- W3093984672 hasConceptScore W3093984672C106365562 @default.
- W3093984672 hasConceptScore W3093984672C121332964 @default.
- W3093984672 hasConceptScore W3093984672C151730666 @default.
- W3093984672 hasConceptScore W3093984672C154945302 @default.
- W3093984672 hasConceptScore W3093984672C17744445 @default.
- W3093984672 hasConceptScore W3093984672C19768560 @default.
- W3093984672 hasConceptScore W3093984672C199539241 @default.
- W3093984672 hasConceptScore W3093984672C207029474 @default.
- W3093984672 hasConceptScore W3093984672C2524010 @default.
- W3093984672 hasConceptScore W3093984672C2778444522 @default.
- W3093984672 hasConceptScore W3093984672C2778539849 @default.
- W3093984672 hasConceptScore W3093984672C2779343474 @default.
- W3093984672 hasConceptScore W3093984672C2779662365 @default.
- W3093984672 hasConceptScore W3093984672C31258907 @default.
- W3093984672 hasConceptScore W3093984672C33923547 @default.
- W3093984672 hasConceptScore W3093984672C41008148 @default.
- W3093984672 hasConceptScore W3093984672C62520636 @default.
- W3093984672 hasConceptScore W3093984672C68649174 @default.