Matches in SemOpenAlex for { <https://semopenalex.org/work/W3094006723> ?p ?o ?g. }
- W3094006723 abstract "Text localization from the digital image is the first step for the optical character recognition task. Conventional image processing based text localization performs adequately for specific examples. Yet, a general text localization are only archived by recent deep-learning based modalities. Here we present document Text Localization Generative Adversarial Nets (TLGAN) which are deep neural networks to perform the text localization from digital image. TLGAN is an versatile and easy-train text localization model requiring a small amount of data. Training only ten labeled receipt images from Robust Reading Challenge on Scanned Receipts OCR and Information Extraction (SROIE), TLGAN achieved 99.83% precision and 99.64% recall for SROIE test data. Our TLGAN is a practical text localization solution requiring minimal effort for data labeling and model training and producing a state-of-art performance." @default.
- W3094006723 created "2020-10-29" @default.
- W3094006723 creator A5002474625 @default.
- W3094006723 creator A5017300068 @default.
- W3094006723 creator A5021283036 @default.
- W3094006723 creator A5055558181 @default.
- W3094006723 creator A5063976757 @default.
- W3094006723 date "2020-10-22" @default.
- W3094006723 modified "2023-10-16" @default.
- W3094006723 title "TLGAN: document Text Localization using Generative Adversarial Nets" @default.
- W3094006723 cites W1686810756 @default.
- W3094006723 cites W1710476689 @default.
- W3094006723 cites W1901129140 @default.
- W3094006723 cites W2008806374 @default.
- W3094006723 cites W2037227137 @default.
- W3094006723 cites W2056518953 @default.
- W3094006723 cites W2065429801 @default.
- W3094006723 cites W2108598243 @default.
- W3094006723 cites W2161208721 @default.
- W3094006723 cites W2331128040 @default.
- W3094006723 cites W2343052201 @default.
- W3094006723 cites W2407521645 @default.
- W3094006723 cites W2476548250 @default.
- W3094006723 cites W2517954747 @default.
- W3094006723 cites W2519818067 @default.
- W3094006723 cites W2550687635 @default.
- W3094006723 cites W2554423077 @default.
- W3094006723 cites W2559800592 @default.
- W3094006723 cites W2570343428 @default.
- W3094006723 cites W2579985080 @default.
- W3094006723 cites W2605982830 @default.
- W3094006723 cites W2796347433 @default.
- W3094006723 cites W2912792574 @default.
- W3094006723 cites W2928165649 @default.
- W3094006723 cites W2949064199 @default.
- W3094006723 cites W2949117887 @default.
- W3094006723 cites W2949533892 @default.
- W3094006723 cites W2949650786 @default.
- W3094006723 cites W2950975557 @default.
- W3094006723 cites W2952632681 @default.
- W3094006723 cites W2953106684 @default.
- W3094006723 cites W2962974533 @default.
- W3094006723 cites W2963037989 @default.
- W3094006723 cites W2963073614 @default.
- W3094006723 cites W2963470893 @default.
- W3094006723 cites W2963647456 @default.
- W3094006723 cites W2963684088 @default.
- W3094006723 cites W2963840241 @default.
- W3094006723 cites W2963840672 @default.
- W3094006723 cites W2963864522 @default.
- W3094006723 cites W2964121744 @default.
- W3094006723 cites W2964151039 @default.
- W3094006723 cites W2967615747 @default.
- W3094006723 cites W2982278021 @default.
- W3094006723 cites W2991626090 @default.
- W3094006723 cites W2991847241 @default.
- W3094006723 cites W2993007998 @default.
- W3094006723 cites W3013601111 @default.
- W3094006723 cites W3106250896 @default.
- W3094006723 doi "https://doi.org/10.48550/arxiv.2010.11547" @default.
- W3094006723 hasPublicationYear "2020" @default.
- W3094006723 type Work @default.
- W3094006723 sameAs 3094006723 @default.
- W3094006723 citedByCount "0" @default.
- W3094006723 crossrefType "posted-content" @default.
- W3094006723 hasAuthorship W3094006723A5002474625 @default.
- W3094006723 hasAuthorship W3094006723A5017300068 @default.
- W3094006723 hasAuthorship W3094006723A5021283036 @default.
- W3094006723 hasAuthorship W3094006723A5055558181 @default.
- W3094006723 hasAuthorship W3094006723A5063976757 @default.
- W3094006723 hasBestOaLocation W30940067231 @default.
- W3094006723 hasConcept C108583219 @default.
- W3094006723 hasConcept C115961682 @default.
- W3094006723 hasConcept C153180895 @default.
- W3094006723 hasConcept C154945302 @default.
- W3094006723 hasConcept C162324750 @default.
- W3094006723 hasConcept C187736073 @default.
- W3094006723 hasConcept C204321447 @default.
- W3094006723 hasConcept C2524010 @default.
- W3094006723 hasConcept C2780451532 @default.
- W3094006723 hasConcept C2780861071 @default.
- W3094006723 hasConcept C28490314 @default.
- W3094006723 hasConcept C2988773926 @default.
- W3094006723 hasConcept C33923547 @default.
- W3094006723 hasConcept C37736160 @default.
- W3094006723 hasConcept C39890363 @default.
- W3094006723 hasConcept C41008148 @default.
- W3094006723 hasConcept C546480517 @default.
- W3094006723 hasConceptScore W3094006723C108583219 @default.
- W3094006723 hasConceptScore W3094006723C115961682 @default.
- W3094006723 hasConceptScore W3094006723C153180895 @default.
- W3094006723 hasConceptScore W3094006723C154945302 @default.
- W3094006723 hasConceptScore W3094006723C162324750 @default.
- W3094006723 hasConceptScore W3094006723C187736073 @default.
- W3094006723 hasConceptScore W3094006723C204321447 @default.
- W3094006723 hasConceptScore W3094006723C2524010 @default.
- W3094006723 hasConceptScore W3094006723C2780451532 @default.
- W3094006723 hasConceptScore W3094006723C2780861071 @default.
- W3094006723 hasConceptScore W3094006723C28490314 @default.
- W3094006723 hasConceptScore W3094006723C2988773926 @default.