Matches in SemOpenAlex for { <https://semopenalex.org/work/W3094006908> ?p ?o ?g. }
- W3094006908 abstract "A volcano is a complex system, and the characterization of its state at any given time is not an easy task. Monitoring data can be used to estimate the probability of an unrest and/or an eruption episode. These can include seismic, magnetic, electromagnetic, deformation, infrasonic, thermal, geochemical data or, in an ideal situation, a combination of them. Merging data of different origins is a non-trivial task, and often even extracting few relevant and information-rich parameters from a homogeneous time series is already challenging. The key to the characterization of volcanic regimes is in fact a process of data reduction that should produce a relatively small vector of features. The next step is the interpretation of the resulting features, through the recognition of similar vectors and for example, their association to a given state of the volcano. This can lead in turn to highlight possible precursors of unrests and eruptions. This final step can benefit from the application of machine learning techniques, that are able to process big data in an efficient way. Other applications of machine learning in volcanology include the analysis and classification of geological, geochemical and petrological “static” data to infer for example, the possible source and mechanism of observed deposits, the analysis of satellite imagery to quickly classify vast regions difficult to investigate on the ground or, again, to detect changes that could indicate an unrest. Moreover, the use of machine learning is gaining importance in other areas of volcanology, not only for monitoring purposes but for differentiating particular geochemical patterns, stratigraphic issues, differentiating morphological patterns of volcanic edifices, or to assess spatial distribution of volcanoes. Machine learning is helpful in the discrimination of magmatic complexes, in distinguishing tectonic settings of volcanic rocks, in the evaluation of correlations of volcanic units, being particularly helpful in tephrochronology, etc. In this chapter we will review the relevant methods and results published in the last decades using machine learning in volcanology, both with respect to the choice of the optimal feature vectors and to their subsequent classification, taking into account both the unsupervised and the supervised approaches." @default.
- W3094006908 created "2020-10-29" @default.
- W3094006908 creator A5037094608 @default.
- W3094006908 creator A5048474829 @default.
- W3094006908 date "2021-06-09" @default.
- W3094006908 modified "2023-10-16" @default.
- W3094006908 title "Machine Learning in Volcanology: A Review" @default.
- W3094006908 cites W1510178345 @default.
- W3094006908 cites W1537069669 @default.
- W3094006908 cites W1571688822 @default.
- W3094006908 cites W1623192593 @default.
- W3094006908 cites W170362864 @default.
- W3094006908 cites W1750550458 @default.
- W3094006908 cites W193875469 @default.
- W3094006908 cites W1963546387 @default.
- W3094006908 cites W1963899048 @default.
- W3094006908 cites W1974566152 @default.
- W3094006908 cites W1988343198 @default.
- W3094006908 cites W1992002291 @default.
- W3094006908 cites W1993290622 @default.
- W3094006908 cites W1997044610 @default.
- W3094006908 cites W1997109194 @default.
- W3094006908 cites W2002273453 @default.
- W3094006908 cites W2007757881 @default.
- W3094006908 cites W2015785549 @default.
- W3094006908 cites W2018078975 @default.
- W3094006908 cites W2027898684 @default.
- W3094006908 cites W2028124403 @default.
- W3094006908 cites W2034380773 @default.
- W3094006908 cites W2035703708 @default.
- W3094006908 cites W2037709691 @default.
- W3094006908 cites W2038048906 @default.
- W3094006908 cites W2039449702 @default.
- W3094006908 cites W2041849814 @default.
- W3094006908 cites W2046043000 @default.
- W3094006908 cites W2046155331 @default.
- W3094006908 cites W2048673468 @default.
- W3094006908 cites W2051914597 @default.
- W3094006908 cites W2060692981 @default.
- W3094006908 cites W2061596856 @default.
- W3094006908 cites W2064675550 @default.
- W3094006908 cites W2072977827 @default.
- W3094006908 cites W2073089862 @default.
- W3094006908 cites W2075434058 @default.
- W3094006908 cites W2079092352 @default.
- W3094006908 cites W2089928476 @default.
- W3094006908 cites W2093021861 @default.
- W3094006908 cites W2094502698 @default.
- W3094006908 cites W2096901553 @default.
- W3094006908 cites W2098085861 @default.
- W3094006908 cites W2099973783 @default.
- W3094006908 cites W2101816916 @default.
- W3094006908 cites W2108177916 @default.
- W3094006908 cites W2108821168 @default.
- W3094006908 cites W2109013073 @default.
- W3094006908 cites W2112393517 @default.
- W3094006908 cites W2117279989 @default.
- W3094006908 cites W2120575449 @default.
- W3094006908 cites W2124656873 @default.
- W3094006908 cites W2126572488 @default.
- W3094006908 cites W2131380685 @default.
- W3094006908 cites W2133905812 @default.
- W3094006908 cites W2136418253 @default.
- W3094006908 cites W2150579376 @default.
- W3094006908 cites W2151802570 @default.
- W3094006908 cites W2155769985 @default.
- W3094006908 cites W2155913568 @default.
- W3094006908 cites W2157009970 @default.
- W3094006908 cites W2162398861 @default.
- W3094006908 cites W2165698076 @default.
- W3094006908 cites W2167329658 @default.
- W3094006908 cites W2167689692 @default.
- W3094006908 cites W2168414160 @default.
- W3094006908 cites W2169750459 @default.
- W3094006908 cites W2170670218 @default.
- W3094006908 cites W2171175638 @default.
- W3094006908 cites W2284311382 @default.
- W3094006908 cites W2313007224 @default.
- W3094006908 cites W2318410576 @default.
- W3094006908 cites W2336871504 @default.
- W3094006908 cites W2496041433 @default.
- W3094006908 cites W2521110442 @default.
- W3094006908 cites W2575727525 @default.
- W3094006908 cites W2594559052 @default.
- W3094006908 cites W2608518078 @default.
- W3094006908 cites W2611159092 @default.
- W3094006908 cites W2739176664 @default.
- W3094006908 cites W2787894218 @default.
- W3094006908 cites W2793454338 @default.
- W3094006908 cites W2794436210 @default.
- W3094006908 cites W2885995970 @default.
- W3094006908 cites W2886077201 @default.
- W3094006908 cites W2891282662 @default.
- W3094006908 cites W2894841399 @default.
- W3094006908 cites W2895435802 @default.
- W3094006908 cites W2900574966 @default.
- W3094006908 cites W2907748016 @default.
- W3094006908 cites W2908425208 @default.
- W3094006908 cites W2945100201 @default.
- W3094006908 cites W2955832930 @default.