Matches in SemOpenAlex for { <https://semopenalex.org/work/W3094037006> ?p ?o ?g. }
- W3094037006 abstract "Abstract Low salinity water flooding (LSW) has gained significant attention, because of its advantages compared with other enhanced oil recovery (EOR) methods. LSW's positive contribution to recovery factor has been demonstrated in the literature at lab and field scales. However, LSW flooding does not always increment oil recovery. It is a specific combination of properties of an asphaltenic crude oil, chemically equilibrated brine, and rock surface that may explain the success or failure of LSW. In this work, we introduce a novel experimental approach to study asphaltene-like chemical interactions with surfaces rock minerals to evaluate the effectiveness of applying LSW. When studying the impact of asphaltene properties on incremental recovery, one aims to detach some of the immobile oil, which is semi-irreversibly stuck on rock surface. This is a difficult task, because of varying crude oil composition, as well as asphaltene interfacial and chemical properties. To overcome these issues, we split the problem into several parts. We study how mono- and poly-functional chemical compounds mimic asphaltene interactions with mineral surfaces, like silica and calcium carbonate, which are proxies for sandstones and limestones, respectively. For example, amines, quaternary ammonia or carboxylates represent asphaltene functional groups that are mainly responsible for crude oil base and acid numbers, respectively. Adsorption of polymers and oligomers containing such groups mimics the irreversible asphaltene deposition onto rock surface through formation of chemically active polymerlike structures at the oil-brine interface. The silica surface is negatively charged in brines with pH above 2. Silica attracts positively charged ammonia salts, such as cetrimonium chloride (CTAC). However, negatively charged mono-functional carboxylates, i.e. anionic surfactants, like sodium hexanoate (NaHex), hardly adsorb onto silica, even in the presence of a bridging ion, like calcium. In contrast to silica, calcium carbonate surface has both positive and negative charges on its surface. We found that CTAC adsorbs onto calcium carbonate in any brine tested. NaHex shows minimal adsorption onto calcium carbonate only in the presence of calcium ions suggesting a contribution of an ion-bridging mechanism. Adsorption of all studied mono-functional surfactants is fully reversible and, consequently not representative of asphaltenes. Multifunctional compounds, i.e., polymers, demonstrate irreversible, asphaltene-like, adsorption. We studied adsorption of carbohydrates decorated with individual amines and quaternary ammonia functional groups. The carbohydrates with amine functional groups adsorb irreversibly on calcium carbonate and silica in all tested brines with pH up to 10. Therefore, a lower base number (BN) in crude oils indicates a higher potential for LSW. Our findings demonstrate the proof of concept that contribution of different functional groups to asphaltene adsorption/deposition can be studied using functionalized water-soluble polymers. This framework is useful for assessment of adsorption strength vs. number of active groups as well as screening of efficient detachment process of asphaltenic crude oils from rock surface." @default.
- W3094037006 created "2020-10-29" @default.
- W3094037006 creator A5016875842 @default.
- W3094037006 creator A5017239696 @default.
- W3094037006 creator A5035542060 @default.
- W3094037006 creator A5053363785 @default.
- W3094037006 creator A5077066922 @default.
- W3094037006 date "2020-10-19" @default.
- W3094037006 modified "2023-10-08" @default.
- W3094037006 title "Novel Approach to Study the Impact of Asphaltene Properties on Low Salinity Flooding" @default.
- W3094037006 cites W1887155921 @default.
- W3094037006 cites W1964559902 @default.
- W3094037006 cites W1966508692 @default.
- W3094037006 cites W1976555600 @default.
- W3094037006 cites W1985064739 @default.
- W3094037006 cites W1989716604 @default.
- W3094037006 cites W1998326070 @default.
- W3094037006 cites W1998750825 @default.
- W3094037006 cites W2005323816 @default.
- W3094037006 cites W2009499453 @default.
- W3094037006 cites W2009717723 @default.
- W3094037006 cites W2013372095 @default.
- W3094037006 cites W2014765883 @default.
- W3094037006 cites W2021219441 @default.
- W3094037006 cites W2022315563 @default.
- W3094037006 cites W2024831176 @default.
- W3094037006 cites W2031121845 @default.
- W3094037006 cites W2034279603 @default.
- W3094037006 cites W2041566600 @default.
- W3094037006 cites W2042301882 @default.
- W3094037006 cites W2042438728 @default.
- W3094037006 cites W2042479541 @default.
- W3094037006 cites W2043519592 @default.
- W3094037006 cites W2045400768 @default.
- W3094037006 cites W2046552090 @default.
- W3094037006 cites W2057857574 @default.
- W3094037006 cites W2058170548 @default.
- W3094037006 cites W2071207660 @default.
- W3094037006 cites W2080678112 @default.
- W3094037006 cites W2081111402 @default.
- W3094037006 cites W2085731681 @default.
- W3094037006 cites W2087531232 @default.
- W3094037006 cites W2111413788 @default.
- W3094037006 cites W2132905138 @default.
- W3094037006 cites W2193099517 @default.
- W3094037006 cites W2214245812 @default.
- W3094037006 cites W2222849606 @default.
- W3094037006 cites W2252206314 @default.
- W3094037006 cites W2263194416 @default.
- W3094037006 cites W2326223782 @default.
- W3094037006 cites W2334386657 @default.
- W3094037006 cites W2409584111 @default.
- W3094037006 cites W2460695479 @default.
- W3094037006 cites W2468625821 @default.
- W3094037006 cites W2477123516 @default.
- W3094037006 cites W2530146344 @default.
- W3094037006 cites W2599199563 @default.
- W3094037006 cites W2735722976 @default.
- W3094037006 cites W2739799419 @default.
- W3094037006 cites W2766195261 @default.
- W3094037006 cites W2767019143 @default.
- W3094037006 cites W2768031366 @default.
- W3094037006 cites W2783743571 @default.
- W3094037006 cites W2789241851 @default.
- W3094037006 cites W2792040827 @default.
- W3094037006 cites W2801692485 @default.
- W3094037006 cites W2888343870 @default.
- W3094037006 cites W2895541347 @default.
- W3094037006 cites W2899607261 @default.
- W3094037006 cites W2901132865 @default.
- W3094037006 cites W2904571223 @default.
- W3094037006 cites W2904967265 @default.
- W3094037006 cites W2909037775 @default.
- W3094037006 cites W2920129824 @default.
- W3094037006 cites W2943319423 @default.
- W3094037006 cites W2973234712 @default.
- W3094037006 cites W4241640224 @default.
- W3094037006 cites W4376453152 @default.
- W3094037006 doi "https://doi.org/10.2118/201747-ms" @default.
- W3094037006 hasPublicationYear "2020" @default.
- W3094037006 type Work @default.
- W3094037006 sameAs 3094037006 @default.
- W3094037006 citedByCount "2" @default.
- W3094037006 countsByYear W30940370062022 @default.
- W3094037006 countsByYear W30940370062023 @default.
- W3094037006 crossrefType "proceedings-article" @default.
- W3094037006 hasAuthorship W3094037006A5016875842 @default.
- W3094037006 hasAuthorship W3094037006A5017239696 @default.
- W3094037006 hasAuthorship W3094037006A5035542060 @default.
- W3094037006 hasAuthorship W3094037006A5053363785 @default.
- W3094037006 hasAuthorship W3094037006A5077066922 @default.
- W3094037006 hasBestOaLocation W30940370062 @default.
- W3094037006 hasConcept C111368507 @default.
- W3094037006 hasConcept C127313418 @default.
- W3094037006 hasConcept C127413603 @default.
- W3094037006 hasConcept C129513315 @default.
- W3094037006 hasConcept C150394285 @default.
- W3094037006 hasConcept C178790620 @default.
- W3094037006 hasConcept C185592680 @default.
- W3094037006 hasConcept C2776364302 @default.