Matches in SemOpenAlex for { <https://semopenalex.org/work/W3094042508> ?p ?o ?g. }
- W3094042508 endingPage "23" @default.
- W3094042508 startingPage "12" @default.
- W3094042508 abstract "BACKGROUND Chronic lung allograft dysfunction (CLAD) is the leading cause of mortality in lung transplant recipients. CLAD is characterized by respiratory failure owing to the accumulation of fibrotic cells in small airways and alveoli, inducing tissue contraction and architectural destruction. However, the source of the fibroblastic cells and the mechanism(s) underlying the accumulation and activation remain unexplained. Mesenchymal stromal cells (MSCs) are multipotent progenitors that are normally located in the lung tissue but can be isolated from the alveolar space in lung transplant recipients, where they have a profibrotic phenotype. Our objective was to identify the mediator(s) inducing migration and contractile differentiation of lung tissue MSCs. METHODS Bronchoalveolar lavage (BAL) (7 healthy controls and 21 lung transplant recipients), CCL2, HGF, TGFB, EGF, and PDGF-BB and autotaxin were measured by enzyme-linked immunosorbent assay. BAL (7 healthy controls and 31 lung transplant recipients) lysophosphatidic acid (LPA) (16:0, 18:0, 18:1, 22:4) was measured by liquid chromatography with tandem mass spectrometry. The effect of inhibition of candidate mediators on BAL-mediated chemoattraction of MSCs and contraction of MSC-spiked collagen gel assays was assessed. BAL cells from a lung transplant recipient with CLAD were analyzed by single-cell RNA sequencing. RESULTS We first demonstrate that BAL fluid from lung transplant recipients and particularly those with CLAD is potently chemoattractive to human lung tissue‒derived MSCs and induces a contractile phenotype. After excluding several candidate mediators, we show that LPA blockade completely abrogated transplant recipient BAL‒mediated chemoattraction of MSCs and contraction of MSC-spiked collagen gels. Furthermore, LPA levels were enriched in transplant recipient BAL, and LPA replicated the observed in vitro profibrotic effects of transplant recipient BAL. Finally, we identify BAL monocyte‒derived macrophages with autotaxin (ENPP2) and fibrotic transcriptional signature. CONCLUSIONS Autotaxin-expressing alveolar macrophages are present in CLAD BAL. These cells potentially provide a local source of autotaxin/LPA that drives MSC recruitment and tissue contraction in CLAD. These cells are analogous to an aberrant macrophage population recently identified in idiopathic pulmonary fibrosis, suggesting an overlap in pathogenesis between CLAD and other forms of lung fibrosis. Chronic lung allograft dysfunction (CLAD) is the leading cause of mortality in lung transplant recipients. CLAD is characterized by respiratory failure owing to the accumulation of fibrotic cells in small airways and alveoli, inducing tissue contraction and architectural destruction. However, the source of the fibroblastic cells and the mechanism(s) underlying the accumulation and activation remain unexplained. Mesenchymal stromal cells (MSCs) are multipotent progenitors that are normally located in the lung tissue but can be isolated from the alveolar space in lung transplant recipients, where they have a profibrotic phenotype. Our objective was to identify the mediator(s) inducing migration and contractile differentiation of lung tissue MSCs. Bronchoalveolar lavage (BAL) (7 healthy controls and 21 lung transplant recipients), CCL2, HGF, TGFB, EGF, and PDGF-BB and autotaxin were measured by enzyme-linked immunosorbent assay. BAL (7 healthy controls and 31 lung transplant recipients) lysophosphatidic acid (LPA) (16:0, 18:0, 18:1, 22:4) was measured by liquid chromatography with tandem mass spectrometry. The effect of inhibition of candidate mediators on BAL-mediated chemoattraction of MSCs and contraction of MSC-spiked collagen gel assays was assessed. BAL cells from a lung transplant recipient with CLAD were analyzed by single-cell RNA sequencing. We first demonstrate that BAL fluid from lung transplant recipients and particularly those with CLAD is potently chemoattractive to human lung tissue‒derived MSCs and induces a contractile phenotype. After excluding several candidate mediators, we show that LPA blockade completely abrogated transplant recipient BAL‒mediated chemoattraction of MSCs and contraction of MSC-spiked collagen gels. Furthermore, LPA levels were enriched in transplant recipient BAL, and LPA replicated the observed in vitro profibrotic effects of transplant recipient BAL. Finally, we identify BAL monocyte‒derived macrophages with autotaxin (ENPP2) and fibrotic transcriptional signature. Autotaxin-expressing alveolar macrophages are present in CLAD BAL. These cells potentially provide a local source of autotaxin/LPA that drives MSC recruitment and tissue contraction in CLAD. These cells are analogous to an aberrant macrophage population recently identified in idiopathic pulmonary fibrosis, suggesting an overlap in pathogenesis between CLAD and other forms of lung fibrosis." @default.
- W3094042508 created "2020-10-29" @default.
- W3094042508 creator A5000608047 @default.
- W3094042508 creator A5006413215 @default.
- W3094042508 creator A5039211752 @default.
- W3094042508 creator A5041881590 @default.
- W3094042508 creator A5046104898 @default.
- W3094042508 creator A5059754870 @default.
- W3094042508 creator A5063458641 @default.
- W3094042508 creator A5063681577 @default.
- W3094042508 date "2021-01-01" @default.
- W3094042508 modified "2023-10-07" @default.
- W3094042508 title "The autotaxin-lysophosphatidic acid pathway mediates mesenchymal cell recruitment and fibrotic contraction in lung transplant fibrosis" @default.
- W3094042508 cites W1820571921 @default.
- W3094042508 cites W1841597983 @default.
- W3094042508 cites W1969170720 @default.
- W3094042508 cites W1971533405 @default.
- W3094042508 cites W1984883254 @default.
- W3094042508 cites W1988126056 @default.
- W3094042508 cites W1989126478 @default.
- W3094042508 cites W2000708019 @default.
- W3094042508 cites W2003437558 @default.
- W3094042508 cites W2013998980 @default.
- W3094042508 cites W2025371271 @default.
- W3094042508 cites W2031316279 @default.
- W3094042508 cites W2034383024 @default.
- W3094042508 cites W2036316606 @default.
- W3094042508 cites W2040991236 @default.
- W3094042508 cites W2041229805 @default.
- W3094042508 cites W2044837409 @default.
- W3094042508 cites W2052876087 @default.
- W3094042508 cites W2060045921 @default.
- W3094042508 cites W2068594497 @default.
- W3094042508 cites W2131032222 @default.
- W3094042508 cites W2143933188 @default.
- W3094042508 cites W2147468497 @default.
- W3094042508 cites W2148613772 @default.
- W3094042508 cites W2161787739 @default.
- W3094042508 cites W2163029333 @default.
- W3094042508 cites W2320492669 @default.
- W3094042508 cites W2464290802 @default.
- W3094042508 cites W2507658556 @default.
- W3094042508 cites W2512899508 @default.
- W3094042508 cites W2555167344 @default.
- W3094042508 cites W2736034593 @default.
- W3094042508 cites W2885411864 @default.
- W3094042508 cites W2890528646 @default.
- W3094042508 cites W2892500428 @default.
- W3094042508 cites W2904478560 @default.
- W3094042508 cites W2933321059 @default.
- W3094042508 cites W2946186353 @default.
- W3094042508 cites W2951858660 @default.
- W3094042508 cites W2998872970 @default.
- W3094042508 cites W4241451070 @default.
- W3094042508 doi "https://doi.org/10.1016/j.healun.2020.10.005" @default.
- W3094042508 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33339555" @default.
- W3094042508 hasPublicationYear "2021" @default.
- W3094042508 type Work @default.
- W3094042508 sameAs 3094042508 @default.
- W3094042508 citedByCount "7" @default.
- W3094042508 countsByYear W30940425082021 @default.
- W3094042508 countsByYear W30940425082022 @default.
- W3094042508 countsByYear W30940425082023 @default.
- W3094042508 crossrefType "journal-article" @default.
- W3094042508 hasAuthorship W3094042508A5000608047 @default.
- W3094042508 hasAuthorship W3094042508A5006413215 @default.
- W3094042508 hasAuthorship W3094042508A5039211752 @default.
- W3094042508 hasAuthorship W3094042508A5041881590 @default.
- W3094042508 hasAuthorship W3094042508A5046104898 @default.
- W3094042508 hasAuthorship W3094042508A5059754870 @default.
- W3094042508 hasAuthorship W3094042508A5063458641 @default.
- W3094042508 hasAuthorship W3094042508A5063681577 @default.
- W3094042508 hasConcept C126322002 @default.
- W3094042508 hasConcept C142724271 @default.
- W3094042508 hasConcept C170493617 @default.
- W3094042508 hasConcept C198826908 @default.
- W3094042508 hasConcept C203014093 @default.
- W3094042508 hasConcept C2776661833 @default.
- W3094042508 hasConcept C2777714996 @default.
- W3094042508 hasConcept C2777961210 @default.
- W3094042508 hasConcept C2778341716 @default.
- W3094042508 hasConcept C2780559512 @default.
- W3094042508 hasConcept C2781448352 @default.
- W3094042508 hasConcept C37547375 @default.
- W3094042508 hasConcept C71924100 @default.
- W3094042508 hasConceptScore W3094042508C126322002 @default.
- W3094042508 hasConceptScore W3094042508C142724271 @default.
- W3094042508 hasConceptScore W3094042508C170493617 @default.
- W3094042508 hasConceptScore W3094042508C198826908 @default.
- W3094042508 hasConceptScore W3094042508C203014093 @default.
- W3094042508 hasConceptScore W3094042508C2776661833 @default.
- W3094042508 hasConceptScore W3094042508C2777714996 @default.
- W3094042508 hasConceptScore W3094042508C2777961210 @default.
- W3094042508 hasConceptScore W3094042508C2778341716 @default.
- W3094042508 hasConceptScore W3094042508C2780559512 @default.
- W3094042508 hasConceptScore W3094042508C2781448352 @default.
- W3094042508 hasConceptScore W3094042508C37547375 @default.
- W3094042508 hasConceptScore W3094042508C71924100 @default.