Matches in SemOpenAlex for { <https://semopenalex.org/work/W3094046734> ?p ?o ?g. }
- W3094046734 endingPage "117480" @default.
- W3094046734 startingPage "117480" @default.
- W3094046734 abstract "The brain can be modelled as a network with nodes and edges derived from a range of imaging modalities: the nodes correspond to spatially distinct regions and the edges to the interactions between them. Whole-brain connectivity studies typically seek to determine how network properties change with a given categorical phenotype such as age-group, disease condition or mental state. To do so reliably, it is necessary to determine the features of the connectivity structure that are common across a group of brain scans. Given the complex interdependencies inherent in network data, this is not a straightforward task. Some studies construct a group-representative network (GRN), ignoring individual differences, while other studies analyse networks for each individual independently, ignoring information that is shared across individuals. We propose a Bayesian framework based on exponential random graph models (ERGM) extended to multiple networks to characterise the distribution of an entire population of networks. Using resting-state fMRI data from the Cam-CAN project, a study on healthy ageing, we demonstrate how our method can be used to characterise and compare the brain's functional connectivity structure across a group of young individuals and a group of old individuals." @default.
- W3094046734 created "2020-10-29" @default.
- W3094046734 creator A5002502518 @default.
- W3094046734 creator A5021331156 @default.
- W3094046734 creator A5031417057 @default.
- W3094046734 creator A5067436607 @default.
- W3094046734 creator A5087360651 @default.
- W3094046734 date "2021-01-01" @default.
- W3094046734 modified "2023-10-13" @default.
- W3094046734 title "Characterising group-level brain connectivity: A framework using Bayesian exponential random graph models" @default.
- W3094046734 cites W1680396847 @default.
- W3094046734 cites W1824528708 @default.
- W3094046734 cites W1970034774 @default.
- W3094046734 cites W1974764791 @default.
- W3094046734 cites W1975171409 @default.
- W3094046734 cites W1986896721 @default.
- W3094046734 cites W1987924998 @default.
- W3094046734 cites W1999653836 @default.
- W3094046734 cites W2020916330 @default.
- W3094046734 cites W2025668201 @default.
- W3094046734 cites W2050597556 @default.
- W3094046734 cites W2058046532 @default.
- W3094046734 cites W2077716286 @default.
- W3094046734 cites W2091465235 @default.
- W3094046734 cites W2094426896 @default.
- W3094046734 cites W2102206433 @default.
- W3094046734 cites W2106990053 @default.
- W3094046734 cites W2130915922 @default.
- W3094046734 cites W2135838082 @default.
- W3094046734 cites W2145067884 @default.
- W3094046734 cites W2149446634 @default.
- W3094046734 cites W2156645969 @default.
- W3094046734 cites W2160268549 @default.
- W3094046734 cites W2166148649 @default.
- W3094046734 cites W2167822639 @default.
- W3094046734 cites W2342757705 @default.
- W3094046734 cites W2553951788 @default.
- W3094046734 cites W2567503720 @default.
- W3094046734 cites W2583548943 @default.
- W3094046734 cites W2594388353 @default.
- W3094046734 cites W2611220308 @default.
- W3094046734 cites W2617838712 @default.
- W3094046734 cites W2804023156 @default.
- W3094046734 cites W2962881083 @default.
- W3094046734 cites W2963021623 @default.
- W3094046734 cites W2963851063 @default.
- W3094046734 cites W3009199026 @default.
- W3094046734 cites W3098448794 @default.
- W3094046734 cites W3099078835 @default.
- W3094046734 cites W3125979977 @default.
- W3094046734 doi "https://doi.org/10.1016/j.neuroimage.2020.117480" @default.
- W3094046734 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33099009" @default.
- W3094046734 hasPublicationYear "2021" @default.
- W3094046734 type Work @default.
- W3094046734 sameAs 3094046734 @default.
- W3094046734 citedByCount "14" @default.
- W3094046734 countsByYear W30940467342020 @default.
- W3094046734 countsByYear W30940467342021 @default.
- W3094046734 countsByYear W30940467342022 @default.
- W3094046734 countsByYear W30940467342023 @default.
- W3094046734 crossrefType "journal-article" @default.
- W3094046734 hasAuthorship W3094046734A5002502518 @default.
- W3094046734 hasAuthorship W3094046734A5021331156 @default.
- W3094046734 hasAuthorship W3094046734A5031417057 @default.
- W3094046734 hasAuthorship W3094046734A5067436607 @default.
- W3094046734 hasAuthorship W3094046734A5087360651 @default.
- W3094046734 hasBestOaLocation W30940467341 @default.
- W3094046734 hasConcept C107673813 @default.
- W3094046734 hasConcept C119857082 @default.
- W3094046734 hasConcept C132525143 @default.
- W3094046734 hasConcept C144024400 @default.
- W3094046734 hasConcept C149923435 @default.
- W3094046734 hasConcept C154945302 @default.
- W3094046734 hasConcept C15744967 @default.
- W3094046734 hasConcept C169760540 @default.
- W3094046734 hasConcept C2908647359 @default.
- W3094046734 hasConcept C30549945 @default.
- W3094046734 hasConcept C41008148 @default.
- W3094046734 hasConcept C47458327 @default.
- W3094046734 hasConcept C5274069 @default.
- W3094046734 hasConcept C66324658 @default.
- W3094046734 hasConcept C80444323 @default.
- W3094046734 hasConceptScore W3094046734C107673813 @default.
- W3094046734 hasConceptScore W3094046734C119857082 @default.
- W3094046734 hasConceptScore W3094046734C132525143 @default.
- W3094046734 hasConceptScore W3094046734C144024400 @default.
- W3094046734 hasConceptScore W3094046734C149923435 @default.
- W3094046734 hasConceptScore W3094046734C154945302 @default.
- W3094046734 hasConceptScore W3094046734C15744967 @default.
- W3094046734 hasConceptScore W3094046734C169760540 @default.
- W3094046734 hasConceptScore W3094046734C2908647359 @default.
- W3094046734 hasConceptScore W3094046734C30549945 @default.
- W3094046734 hasConceptScore W3094046734C41008148 @default.
- W3094046734 hasConceptScore W3094046734C47458327 @default.
- W3094046734 hasConceptScore W3094046734C5274069 @default.
- W3094046734 hasConceptScore W3094046734C66324658 @default.
- W3094046734 hasConceptScore W3094046734C80444323 @default.
- W3094046734 hasFunder F4320321800 @default.