Matches in SemOpenAlex for { <https://semopenalex.org/work/W3094112527> ?p ?o ?g. }
- W3094112527 abstract "Abstract Background With the growing number of the aged population, the number of Parkinson’s disease (PD) affected people is also mounting. Unfortunately, due to insufficient resources and awareness in underdeveloped countries, proper and timely PD detection is highly challenged. Besides, all PD patients’ symptoms are neither the same nor they all become pronounced at the same stage of the illness. Therefore, this work aims to combine more than one symptom (rest tremor and voice degradation) by collecting data remotely using smartphones and detect PD with the help of a cloud-based machine learning system for telemonitoring the PD patients in the developing countries. Method This proposed system receives rest tremor and vowel phonation data acquired by smartphones with built-in accelerometer and voice recorder sensors. The data are primarily collected from diagnosed PD patients and healthy people for building and optimizing machine learning models that exhibit higher performance. After that, data from newly suspected PD patients are collected, and the trained algorithms are evaluated to detect PD. Based on the majority-vote from those algorithms, PD-detected patients are connected with a nearby neurologist for consultation. Upon receiving patients’ feedback after being diagnosed by the neurologist, the system may update the model by retraining using the latest data. Also, the system requests the detected patients periodically to upload new data to track their disease progress. Result The highest accuracy in PD detection using offline data was $$98.3%$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mn>98.3</mml:mn> <mml:mo>%</mml:mo> </mml:mrow> </mml:math> from voice data and $$98.5%$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mn>98.5</mml:mn> <mml:mo>%</mml:mo> </mml:mrow> </mml:math> from tremor data when used separately. In both cases, k-nearest neighbors (kNN) gave the highest accuracy over support vector machine (SVM) and naive Bayes (NB). The application of maximum relevance minimum redundancy (MRMR) feature selection method showed that by selecting different feature sets based on the patient’s gender, we could improve the detection accuracy. This study’s novelty is the application of ensemble averaging on the combined decisions generated from the analysis of voice and tremor data. The average accuracy of PD detection becomes $$99.8%$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mn>99.8</mml:mn> <mml:mo>%</mml:mo> </mml:mrow> </mml:math> when ensemble averaging was performed on majority-vote from kNN, SVM, and NB. Conclusion The proposed system can detect PD using a cloud-based system for computation, data preserving, and regular monitoring of voice and tremor samples captured by smartphones. Thus, this system can be a solution for healthcare authorities to ensure the older population’s accessibility to a better medical diagnosis system in the developing countries, especially in the pandemic situation like COVID-19, when in-person monitoring is minimal." @default.
- W3094112527 created "2020-10-29" @default.
- W3094112527 creator A5004817785 @default.
- W3094112527 creator A5025802135 @default.
- W3094112527 creator A5043916064 @default.
- W3094112527 creator A5062252579 @default.
- W3094112527 creator A5073459233 @default.
- W3094112527 creator A5085051533 @default.
- W3094112527 date "2020-10-22" @default.
- W3094112527 modified "2023-10-16" @default.
- W3094112527 title "Telemonitoring Parkinson’s disease using machine learning by combining tremor and voice analysis" @default.
- W3094112527 cites W1605859877 @default.
- W3094112527 cites W2024485924 @default.
- W3094112527 cites W2058542919 @default.
- W3094112527 cites W2086655825 @default.
- W3094112527 cites W2093371115 @default.
- W3094112527 cites W2096542261 @default.
- W3094112527 cites W2100534701 @default.
- W3094112527 cites W2102187116 @default.
- W3094112527 cites W2121739059 @default.
- W3094112527 cites W2125648709 @default.
- W3094112527 cites W2153797245 @default.
- W3094112527 cites W2154029067 @default.
- W3094112527 cites W2163374897 @default.
- W3094112527 cites W2169684591 @default.
- W3094112527 cites W2181962321 @default.
- W3094112527 cites W2288856062 @default.
- W3094112527 cites W2290266083 @default.
- W3094112527 cites W2315840357 @default.
- W3094112527 cites W2509693243 @default.
- W3094112527 cites W2562498401 @default.
- W3094112527 cites W2743691251 @default.
- W3094112527 cites W2774003686 @default.
- W3094112527 cites W2786404279 @default.
- W3094112527 cites W2888664229 @default.
- W3094112527 cites W2909916441 @default.
- W3094112527 cites W2922842086 @default.
- W3094112527 cites W3101840241 @default.
- W3094112527 cites W3105728206 @default.
- W3094112527 doi "https://doi.org/10.1186/s40708-020-00113-1" @default.
- W3094112527 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7579898" @default.
- W3094112527 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33090328" @default.
- W3094112527 hasPublicationYear "2020" @default.
- W3094112527 type Work @default.
- W3094112527 sameAs 3094112527 @default.
- W3094112527 citedByCount "41" @default.
- W3094112527 countsByYear W30941125272021 @default.
- W3094112527 countsByYear W30941125272022 @default.
- W3094112527 countsByYear W30941125272023 @default.
- W3094112527 crossrefType "journal-article" @default.
- W3094112527 hasAuthorship W3094112527A5004817785 @default.
- W3094112527 hasAuthorship W3094112527A5025802135 @default.
- W3094112527 hasAuthorship W3094112527A5043916064 @default.
- W3094112527 hasAuthorship W3094112527A5062252579 @default.
- W3094112527 hasAuthorship W3094112527A5073459233 @default.
- W3094112527 hasAuthorship W3094112527A5085051533 @default.
- W3094112527 hasBestOaLocation W30941125271 @default.
- W3094112527 hasConcept C111919701 @default.
- W3094112527 hasConcept C119857082 @default.
- W3094112527 hasConcept C126322002 @default.
- W3094112527 hasConcept C136764020 @default.
- W3094112527 hasConcept C144133560 @default.
- W3094112527 hasConcept C154945302 @default.
- W3094112527 hasConcept C155202549 @default.
- W3094112527 hasConcept C2778712577 @default.
- W3094112527 hasConcept C2779134260 @default.
- W3094112527 hasConcept C2779734285 @default.
- W3094112527 hasConcept C28490314 @default.
- W3094112527 hasConcept C2908647359 @default.
- W3094112527 hasConcept C41008148 @default.
- W3094112527 hasConcept C71901391 @default.
- W3094112527 hasConcept C71924100 @default.
- W3094112527 hasConcept C89805583 @default.
- W3094112527 hasConcept C99454951 @default.
- W3094112527 hasConcept C99508421 @default.
- W3094112527 hasConceptScore W3094112527C111919701 @default.
- W3094112527 hasConceptScore W3094112527C119857082 @default.
- W3094112527 hasConceptScore W3094112527C126322002 @default.
- W3094112527 hasConceptScore W3094112527C136764020 @default.
- W3094112527 hasConceptScore W3094112527C144133560 @default.
- W3094112527 hasConceptScore W3094112527C154945302 @default.
- W3094112527 hasConceptScore W3094112527C155202549 @default.
- W3094112527 hasConceptScore W3094112527C2778712577 @default.
- W3094112527 hasConceptScore W3094112527C2779134260 @default.
- W3094112527 hasConceptScore W3094112527C2779734285 @default.
- W3094112527 hasConceptScore W3094112527C28490314 @default.
- W3094112527 hasConceptScore W3094112527C2908647359 @default.
- W3094112527 hasConceptScore W3094112527C41008148 @default.
- W3094112527 hasConceptScore W3094112527C71901391 @default.
- W3094112527 hasConceptScore W3094112527C71924100 @default.
- W3094112527 hasConceptScore W3094112527C89805583 @default.
- W3094112527 hasConceptScore W3094112527C99454951 @default.
- W3094112527 hasConceptScore W3094112527C99508421 @default.
- W3094112527 hasIssue "1" @default.
- W3094112527 hasLocation W30941125271 @default.
- W3094112527 hasLocation W30941125272 @default.
- W3094112527 hasLocation W30941125273 @default.
- W3094112527 hasLocation W30941125274 @default.
- W3094112527 hasLocation W30941125275 @default.
- W3094112527 hasOpenAccess W3094112527 @default.