Matches in SemOpenAlex for { <https://semopenalex.org/work/W3094164911> ?p ?o ?g. }
- W3094164911 endingPage "3313" @default.
- W3094164911 startingPage "3300" @default.
- W3094164911 abstract "Functional imaging has successfully been applied to capture functional changes in the pathological tissues of a body in recent years. Nuclear medicine functional imaging has been used to acquire information about areas of concerns (e.g. lesions and organs) in a non-invasive manner, enabling semi-automated or automated decision-making for disease diagnosis, treatment, evaluation, and prediction. Focusing on functional nuclear medicine images, in this study, the authors review existing work on the classification of single-photon emission computed tomography, positron emission tomography, and their hybrid modalities with computed tomography and magnetic resonance imaging images by using convolutional neural network (CNN) techniques. Specifically, they first present an overview of nuclear imaging and the CNN technique, such as nuclear imaging modalities, nuclear image data format, CNN architecture, and the main CNN classification models. According to the diseases of concern, they then classify the existing CNN-based work on the classification of functional nuclear images into three different categories. For the typical work in each of these categories, they present details about their research objectives, adopted CNN models, and achieved main results. Finally, they discuss research challenges and directions for developing technological solutions to classify nuclear medicine images based on the CNN technique." @default.
- W3094164911 created "2020-10-29" @default.
- W3094164911 creator A5000547535 @default.
- W3094164911 creator A5006072641 @default.
- W3094164911 creator A5007941220 @default.
- W3094164911 creator A5022526929 @default.
- W3094164911 creator A5027578176 @default.
- W3094164911 creator A5032819724 @default.
- W3094164911 creator A5054451660 @default.
- W3094164911 creator A5055779703 @default.
- W3094164911 creator A5072978209 @default.
- W3094164911 creator A5076166184 @default.
- W3094164911 creator A5077000621 @default.
- W3094164911 creator A5077528633 @default.
- W3094164911 date "2020-10-21" @default.
- W3094164911 modified "2023-09-24" @default.
- W3094164911 title "Classifying functional nuclear images with convolutional neural networks: a survey" @default.
- W3094164911 cites W1485981043 @default.
- W3094164911 cites W1523493493 @default.
- W3094164911 cites W1677182931 @default.
- W3094164911 cites W1849277567 @default.
- W3094164911 cites W1861492603 @default.
- W3094164911 cites W1982628525 @default.
- W3094164911 cites W1992141428 @default.
- W3094164911 cites W2009805217 @default.
- W3094164911 cites W2015861736 @default.
- W3094164911 cites W2037227137 @default.
- W3094164911 cites W2052094222 @default.
- W3094164911 cites W2064675550 @default.
- W3094164911 cites W2068470708 @default.
- W3094164911 cites W2069143585 @default.
- W3094164911 cites W2076063813 @default.
- W3094164911 cites W2076167926 @default.
- W3094164911 cites W2088897029 @default.
- W3094164911 cites W2097117768 @default.
- W3094164911 cites W2103496339 @default.
- W3094164911 cites W2106370551 @default.
- W3094164911 cites W2112796928 @default.
- W3094164911 cites W2136922672 @default.
- W3094164911 cites W2140187489 @default.
- W3094164911 cites W2142002026 @default.
- W3094164911 cites W2163345210 @default.
- W3094164911 cites W2183341477 @default.
- W3094164911 cites W2194775991 @default.
- W3094164911 cites W2253429366 @default.
- W3094164911 cites W2345010043 @default.
- W3094164911 cites W2531409750 @default.
- W3094164911 cites W2533800772 @default.
- W3094164911 cites W2549139847 @default.
- W3094164911 cites W2558789525 @default.
- W3094164911 cites W2561981131 @default.
- W3094164911 cites W2592929672 @default.
- W3094164911 cites W2605850958 @default.
- W3094164911 cites W2620382476 @default.
- W3094164911 cites W2622826443 @default.
- W3094164911 cites W2724494584 @default.
- W3094164911 cites W2729145866 @default.
- W3094164911 cites W2731161895 @default.
- W3094164911 cites W2750627772 @default.
- W3094164911 cites W2753190710 @default.
- W3094164911 cites W2767106145 @default.
- W3094164911 cites W2768901570 @default.
- W3094164911 cites W2777186991 @default.
- W3094164911 cites W2779497537 @default.
- W3094164911 cites W2789956930 @default.
- W3094164911 cites W2791282053 @default.
- W3094164911 cites W2793409683 @default.
- W3094164911 cites W2794689145 @default.
- W3094164911 cites W2797624406 @default.
- W3094164911 cites W2802431269 @default.
- W3094164911 cites W2805773775 @default.
- W3094164911 cites W2883558452 @default.
- W3094164911 cites W2884585870 @default.
- W3094164911 cites W2888743781 @default.
- W3094164911 cites W2890143692 @default.
- W3094164911 cites W2890991727 @default.
- W3094164911 cites W2898980849 @default.
- W3094164911 cites W2899393783 @default.
- W3094164911 cites W2901245852 @default.
- W3094164911 cites W2903043221 @default.
- W3094164911 cites W2905184173 @default.
- W3094164911 cites W2908249658 @default.
- W3094164911 cites W2908378554 @default.
- W3094164911 cites W2908804667 @default.
- W3094164911 cites W2916257687 @default.
- W3094164911 cites W2919115771 @default.
- W3094164911 cites W2919159054 @default.
- W3094164911 cites W2919358988 @default.
- W3094164911 cites W2941458854 @default.
- W3094164911 cites W2942882625 @default.
- W3094164911 cites W2944018656 @default.
- W3094164911 cites W2950278227 @default.
- W3094164911 cites W2954725578 @default.
- W3094164911 cites W2954996726 @default.
- W3094164911 cites W2956939729 @default.
- W3094164911 cites W2962971773 @default.
- W3094164911 cites W2963227127 @default.
- W3094164911 cites W2963446712 @default.