Matches in SemOpenAlex for { <https://semopenalex.org/work/W3094175033> ?p ?o ?g. }
- W3094175033 endingPage "1218" @default.
- W3094175033 startingPage "1195" @default.
- W3094175033 abstract "This work proposes a Tensor Train Random Projection (TTRP) method for dimension reduction, where pairwise distances can be approximately preserved. Our TTRP is systematically constructed through a Tensor Train (TT) representation with TT-ranks equal to one. Based on the tensor train format, this random projection method can speed up the dimension reduction procedure for high-dimensional datasets and requires fewer storage costs with little loss in accuracy, compared with existing methods. We provide a theoretical analysis of the bias and the variance of TTRP, which shows that this approach is an expected isometric projection with bounded variance, and we show that the scaling Rademacher variable is an optimal choice for generating the corresponding TT-cores. Detailed numerical experiments with synthetic datasets and the MNIST dataset are conducted to demonstrate the efficiency of TTRP." @default.
- W3094175033 created "2020-10-29" @default.
- W3094175033 creator A5006745534 @default.
- W3094175033 creator A5014407690 @default.
- W3094175033 creator A5060905786 @default.
- W3094175033 creator A5081772659 @default.
- W3094175033 creator A5089364908 @default.
- W3094175033 date "2023-01-01" @default.
- W3094175033 modified "2023-09-26" @default.
- W3094175033 title "Tensor Train Random Projection" @default.
- W3094175033 cites W1814521481 @default.
- W3094175033 cites W1993482030 @default.
- W3094175033 cites W2024165284 @default.
- W3094175033 cites W2030449718 @default.
- W3094175033 cites W2037757210 @default.
- W3094175033 cites W2037768897 @default.
- W3094175033 cites W2073389244 @default.
- W3094175033 cites W2089468765 @default.
- W3094175033 cites W2093813380 @default.
- W3094175033 cites W2096391265 @default.
- W3094175033 cites W2112796928 @default.
- W3094175033 cites W2145096794 @default.
- W3094175033 cites W2798684611 @default.
- W3094175033 cites W2963262327 @default.
- W3094175033 cites W2979473749 @default.
- W3094175033 cites W2991374172 @default.
- W3094175033 cites W3001361757 @default.
- W3094175033 cites W3008455412 @default.
- W3094175033 cites W3042743256 @default.
- W3094175033 cites W3094211687 @default.
- W3094175033 cites W3099497510 @default.
- W3094175033 cites W4251209413 @default.
- W3094175033 cites W4312258136 @default.
- W3094175033 cites W56210758 @default.
- W3094175033 doi "https://doi.org/10.32604/cmes.2022.021636" @default.
- W3094175033 hasPublicationYear "2023" @default.
- W3094175033 type Work @default.
- W3094175033 sameAs 3094175033 @default.
- W3094175033 citedByCount "0" @default.
- W3094175033 crossrefType "journal-article" @default.
- W3094175033 hasAuthorship W3094175033A5006745534 @default.
- W3094175033 hasAuthorship W3094175033A5014407690 @default.
- W3094175033 hasAuthorship W3094175033A5060905786 @default.
- W3094175033 hasAuthorship W3094175033A5081772659 @default.
- W3094175033 hasAuthorship W3094175033A5089364908 @default.
- W3094175033 hasBestOaLocation W30941750331 @default.
- W3094175033 hasConcept C105795698 @default.
- W3094175033 hasConcept C11413529 @default.
- W3094175033 hasConcept C114614502 @default.
- W3094175033 hasConcept C121955636 @default.
- W3094175033 hasConcept C134306372 @default.
- W3094175033 hasConcept C144133560 @default.
- W3094175033 hasConcept C154945302 @default.
- W3094175033 hasConcept C155281189 @default.
- W3094175033 hasConcept C17744445 @default.
- W3094175033 hasConcept C190502265 @default.
- W3094175033 hasConcept C19499675 @default.
- W3094175033 hasConcept C196083921 @default.
- W3094175033 hasConcept C199539241 @default.
- W3094175033 hasConcept C2524010 @default.
- W3094175033 hasConcept C2776359362 @default.
- W3094175033 hasConcept C2777036070 @default.
- W3094175033 hasConcept C33676613 @default.
- W3094175033 hasConcept C33923547 @default.
- W3094175033 hasConcept C34388435 @default.
- W3094175033 hasConcept C41008148 @default.
- W3094175033 hasConcept C50644808 @default.
- W3094175033 hasConcept C57493831 @default.
- W3094175033 hasConcept C62644790 @default.
- W3094175033 hasConcept C70518039 @default.
- W3094175033 hasConcept C94625758 @default.
- W3094175033 hasConcept C99844830 @default.
- W3094175033 hasConceptScore W3094175033C105795698 @default.
- W3094175033 hasConceptScore W3094175033C11413529 @default.
- W3094175033 hasConceptScore W3094175033C114614502 @default.
- W3094175033 hasConceptScore W3094175033C121955636 @default.
- W3094175033 hasConceptScore W3094175033C134306372 @default.
- W3094175033 hasConceptScore W3094175033C144133560 @default.
- W3094175033 hasConceptScore W3094175033C154945302 @default.
- W3094175033 hasConceptScore W3094175033C155281189 @default.
- W3094175033 hasConceptScore W3094175033C17744445 @default.
- W3094175033 hasConceptScore W3094175033C190502265 @default.
- W3094175033 hasConceptScore W3094175033C19499675 @default.
- W3094175033 hasConceptScore W3094175033C196083921 @default.
- W3094175033 hasConceptScore W3094175033C199539241 @default.
- W3094175033 hasConceptScore W3094175033C2524010 @default.
- W3094175033 hasConceptScore W3094175033C2776359362 @default.
- W3094175033 hasConceptScore W3094175033C2777036070 @default.
- W3094175033 hasConceptScore W3094175033C33676613 @default.
- W3094175033 hasConceptScore W3094175033C33923547 @default.
- W3094175033 hasConceptScore W3094175033C34388435 @default.
- W3094175033 hasConceptScore W3094175033C41008148 @default.
- W3094175033 hasConceptScore W3094175033C50644808 @default.
- W3094175033 hasConceptScore W3094175033C57493831 @default.
- W3094175033 hasConceptScore W3094175033C62644790 @default.
- W3094175033 hasConceptScore W3094175033C70518039 @default.
- W3094175033 hasConceptScore W3094175033C94625758 @default.
- W3094175033 hasConceptScore W3094175033C99844830 @default.