Matches in SemOpenAlex for { <https://semopenalex.org/work/W3094223171> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W3094223171 endingPage "291" @default.
- W3094223171 startingPage "277" @default.
- W3094223171 abstract "Social networks such as Twitter contain billions of data of users, and in every second, a large number of tweets trade through Twitter. Sentiment analysis is the way toward deciding the emotional tone behind a series of words that users utilize to understand the attitudes, thoughts, and emotions that are enunciated in online references on Twitter. This chapter aims to determine the user preference of Bitcoin and Ethereum, which are the two most popular cryptocurrencies in the world by using the Twitter sentiment analysis. It proposes a powerful and fundamental approach to identify emotions on Twitter by considering the tweets of these two distinctive cryptocurrencies. One hundred twenty thousand (120,000) tweets were extracted separately from Twitter for each keyword Bitcoin/BTC and Bitcoin/ETC between the period from 12/09/2018 to 22/09/2018 (10 days)." @default.
- W3094223171 created "2020-10-29" @default.
- W3094223171 creator A5053757316 @default.
- W3094223171 creator A5079732502 @default.
- W3094223171 date "2021-01-01" @default.
- W3094223171 modified "2023-09-27" @default.
- W3094223171 title "Twitter Sentiment Data Analysis of User Behavior on Cryptocurrencies" @default.
- W3094223171 cites W2067683906 @default.
- W3094223171 cites W2159283035 @default.
- W3094223171 cites W2557258732 @default.
- W3094223171 cites W2583493271 @default.
- W3094223171 cites W2592419886 @default.
- W3094223171 cites W2619863308 @default.
- W3094223171 cites W2744353112 @default.
- W3094223171 cites W2771091377 @default.
- W3094223171 cites W2773726511 @default.
- W3094223171 cites W2790987726 @default.
- W3094223171 cites W2794521982 @default.
- W3094223171 cites W2795028571 @default.
- W3094223171 cites W2888170174 @default.
- W3094223171 cites W2910048657 @default.
- W3094223171 doi "https://doi.org/10.4018/978-1-7998-4718-2.ch015" @default.
- W3094223171 hasPublicationYear "2021" @default.
- W3094223171 type Work @default.
- W3094223171 sameAs 3094223171 @default.
- W3094223171 citedByCount "4" @default.
- W3094223171 countsByYear W30942231712021 @default.
- W3094223171 countsByYear W30942231712022 @default.
- W3094223171 crossrefType "book-chapter" @default.
- W3094223171 hasAuthorship W3094223171A5053757316 @default.
- W3094223171 hasAuthorship W3094223171A5079732502 @default.
- W3094223171 hasConcept C105795698 @default.
- W3094223171 hasConcept C112698675 @default.
- W3094223171 hasConcept C124952713 @default.
- W3094223171 hasConcept C136764020 @default.
- W3094223171 hasConcept C142362112 @default.
- W3094223171 hasConcept C144133560 @default.
- W3094223171 hasConcept C154945302 @default.
- W3094223171 hasConcept C180706569 @default.
- W3094223171 hasConcept C2522767166 @default.
- W3094223171 hasConcept C2780583480 @default.
- W3094223171 hasConcept C2781249084 @default.
- W3094223171 hasConcept C33923547 @default.
- W3094223171 hasConcept C41008148 @default.
- W3094223171 hasConcept C518677369 @default.
- W3094223171 hasConcept C66402592 @default.
- W3094223171 hasConceptScore W3094223171C105795698 @default.
- W3094223171 hasConceptScore W3094223171C112698675 @default.
- W3094223171 hasConceptScore W3094223171C124952713 @default.
- W3094223171 hasConceptScore W3094223171C136764020 @default.
- W3094223171 hasConceptScore W3094223171C142362112 @default.
- W3094223171 hasConceptScore W3094223171C144133560 @default.
- W3094223171 hasConceptScore W3094223171C154945302 @default.
- W3094223171 hasConceptScore W3094223171C180706569 @default.
- W3094223171 hasConceptScore W3094223171C2522767166 @default.
- W3094223171 hasConceptScore W3094223171C2780583480 @default.
- W3094223171 hasConceptScore W3094223171C2781249084 @default.
- W3094223171 hasConceptScore W3094223171C33923547 @default.
- W3094223171 hasConceptScore W3094223171C41008148 @default.
- W3094223171 hasConceptScore W3094223171C518677369 @default.
- W3094223171 hasConceptScore W3094223171C66402592 @default.
- W3094223171 hasLocation W30942231711 @default.
- W3094223171 hasOpenAccess W3094223171 @default.
- W3094223171 hasPrimaryLocation W30942231711 @default.
- W3094223171 hasRelatedWork W2243502667 @default.
- W3094223171 hasRelatedWork W2252197266 @default.
- W3094223171 hasRelatedWork W2460147088 @default.
- W3094223171 hasRelatedWork W2748952813 @default.
- W3094223171 hasRelatedWork W2954270060 @default.
- W3094223171 hasRelatedWork W3147682804 @default.
- W3094223171 hasRelatedWork W4205350312 @default.
- W3094223171 hasRelatedWork W4352978373 @default.
- W3094223171 hasRelatedWork W4380302087 @default.
- W3094223171 hasRelatedWork W4381137115 @default.
- W3094223171 isParatext "false" @default.
- W3094223171 isRetracted "false" @default.
- W3094223171 magId "3094223171" @default.
- W3094223171 workType "book-chapter" @default.